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Abstract

In a closed die forging process, it is impossibléarm complex shapes in one stage, and thus it
becomes necessary to use preform dies. In thentrsggly, Backward Deformation Method and
FE simulation via ABAQUS software has been usedruher to design preform die of the H-
shaped parts. In the Backward Deformation Methlogl final shape of the part is considered as a
starting point and using a specific method, a masturning path is predicted. Afterwards, using
FE results obtained by simulation of the forginggass, an artificial neural network is designed
to predict the material behavior under various @omts and for different kinds of preform to
select optimum preform dies.
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1. Introduction
Forging is one of the oldest methods of formingeDa fine graining without cavities, unified
properties, and the high strength of the produdedctsire, this process, in comparison with
foundry and machining processes, has significaattyacted the attention of researchers and
manufacturers.
In closed die forging, the solid between the twetgaon which the final form of the part is
stamped, is deformed. In this method, the pareferthed in a closed cavity under high pressure
in order to fill the die space which is identicalthe form of the final part. What is definite in
designing this process is the form of the finaltpand type of the material. Given this
information, the designer has to design a proceggdduce the part with the desired form and
properties regarding time and cost limitations. fast forging processes, the fillets have simple
forms. If the form of the final part is complicatate fillet cannot be transformed into the final
form through only one stage of deformation. In ortdeavoid issues such as inappropriate flux of
the material, great forces imposed on the die, iaagpropriate filling of the die, the part is
deformed in several steps using preform dies bdfeneg placed in the main die.
The number of preform steps can be calculated bgreasning the complexity factor of the form
of the final part. In industry, the optimum preforsnusually obtained on the basis of experience,
individual skill, practical experiments, and sintida of the process.
The most important factor in designing the prefatia is filling of the final die, even if other
parameters such as plastic strain and imposedsf@reenot optimized. One common method for
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determining the preform of H-shaped cross sectisrtie Brukhanov and Rebelsky [2] method.
They divided H-sections into two groups based @nré#tio of the height of the wall to its width,
and proposed a preform for each group. Chamoudrdfi@ed another method for determining
the preform of sections with high walls and narmpassages which also comprises H-sections.
Thomas [4] divided the preform of H-sections irteee groups based on the ratio of the height of
the wall to its width.

With the emergence of computer and numerical meathachditional methods of designing
preform were advanced and the steps of trial arad ®rere made using simulation. This reduces
the costs and long time required by various desggand experimenting with preform dies. Since
the shape of the final part and the characteristitse fillet as well as the features of the fidad

are given, a technique called backward deformatg®s the information on the final part in order
to design the preform and achieve the optimal shape

Backward deformation is presented by developing ristricted components of non-linear
problems analyses such as forming the metals vigth theformation. In this manner, for multi-
step forging, the final shape of every step is még@ as the primary shape of the next step. This
process is used to predict the shape of the pastary step of plastic returning.

Backward deformation was first developed by Hwang &obayashi [5] for rolling processes.
Then this method was used for designing preforns dweforging the dies with plane strain.
Biglari et al. [6] developed backward deformatiosing fuzzy decision-making for determining
the new borders of the part based on the geomettyptastic deformation of the part. This
process was proposed for axisymmetric parts inirfigrgn this method, the die moves backward
during the reverse process. The nodes on the gadhware in contact with the die begin to
separate. This is important to predict which noglgasates first. To do so, a fuzzy logic is used
for decision making. The fuzzy logic in this manngrbased on the uniform residual stress,
reduction of possible imperfections of forging metpart, deviation of plastic stress, and the
average minimum work. Then, the optimal preform @eselected using optimization of
designing process. Qingbin et al. [7] proposed & n@ethod for designing the preform by
combining the two methods of limited element anteeded limit element. Having defined a
shape factor, Tomov and Radev [8] calculated ifsaich in pre-production steps and the required
force for forging. Using multi-layered neural netk®, Kim [9] developed a new method based
on neural networks, by which one can calculatefitm® shape of the part on the basis of the
degree of filling the die. Using neural networkheijue and genetic algorithm, Sedighi et al.
[10] obtained optimal preform dies for a given miodeee et al. [11] proposed a method for
producing preform dies for axisymmetric parts usahgctric field theory and neural network. In
this study, they investigated shape complexity émaffects on preform die. Castro et al. [12]
optimized the form and variables of hot forgingngsgenetic algorithm and limited components
solution. Ko et al. [13] presented a new methoddiesigning preform die for multi-step forging
with regard to brittle fracture restriction. In thetudy, the preform dies were optimized using
artificial neural networks. Tang et al. [14] optaad preform dies based on the neural network
response surface methodology to obtain the streiaifithe response surface and to solve non-
linear equations.

A review of the previous works reveals that no corhpnsive method has yet been presented to
obtain optimal preform die for parts with variouscson shapes. Therefore, the present study
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proposes a comprehensive method for designing noneflies using backward deformation and
by completing the method offered by Biglari et[8]. Then, a method will be presented for the
selection of optimal preform die by giving an agpiate structure of neural network. In order to
investigate the proposed method, various typesrefiopm dies for a sample H-shape part are
obtained using this method. Afterwards, the reguirdormation on neural network is obtained
by simulating the process of forging. Having detewd the appropriate structure, the neural
network will predict the behavior of the materialMarious forms with various preforms. Finally,
the optimal preform dies are selected based onpiadiction. The criteria for choosing the
optimal preform die include manufacturing perfeattp with the least load of fillet, full filling of
the die, least plastic stress, and the least redorce for forging. In order to investigate the
reliability of the prediction of the designed nduratwork, optimal models were simulated by the
limited element software, and by comparing the Itesihe accuracy of the proposed neural
network was scrutinized.

2. Material and Methods
2.1 Backward deformation

The principles of this method, which was first uggdBiglari et al. [6] to predict deformation in
forging, are discussed below:

Figure. 1.A scheme of the die and the elementary raw part

1. The die should first be placed in its lowest lewich is the end of the process. The raw
part should be in the beginning of the process.

2. The surface of the die and the primary part shddddivided by equal number of
elements, and the coordinates of all nodes shaulbkained (Figurel).

3. The corresponding nodes on the die and the part@maected to each other and the
corresponding lines are drawn.

4. Coordinates of the nodes are placed in equationand (2); then the coordinates of the
preform nodes are obtained:

X =Xg (1-2) + Xy (5) (1)
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Ve=Ye(1-2) + ¥, (5) 2)

Whered is the final die for the raw part albds the number of steps required to predict thedre
of the direct process. mis considered as a number between zero ankldhérging.

2.2 Geometry and the properties of the die and the part

In this study, the final H-shaped die was used i characteristics as given in Figure 2. It
should be noticed that all the measures are defigadeter. Since the cross section of the die is
symmetric, only one fourth of the whole die is adesed for simulation and meshing regardless
of the curvature of the angles (Figure 3). It istlvanentioning that ignoring the curvature is for

the simplicity of the meshing; therefore, they emasidered in simulation.
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Figure 2. The H-shaped section of the final die
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Figure 3. The simplified model using symmetry cadiodi

In calculating the load of the fillet, it should beticed that the parts of the surface are oxidized
in forging and burr is also formed. Therefore,neaconsiders the load of the fillet as much as the
volume of the die, some cavities will be observidrahe process. So far, various approximate
formula and rules have been proposed for calcgatie primary load of the fillet. These rules
are mainly based on the amount of oxidation and imaking. For this die, the primary part was
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selected as a cylinder with the height of 0.9 m anddius of 0.3 m. Since the raw part is also
symmetric, its cross section was considered axtangle with the length of 400 mm and the
width of 300 mm for meshing and simulation. Lateg will vary the width while keeping the
length constant until we achieve the best fornttierfinal part.

The raw part in this process was made of Al 201dsti€ and plastic properties of this aluminum
are as follows:

Primary yield stress: 23.7 Mpa

Poisson coefficient: 0.33

Elasticity module: 27.9 Gpa

Stress-strain relationship in plastic state isodsws:
G, = max [s, ceP] (3)

Where S is the primary vyield stress, C is the amtstlow 2, and h denotes hardeningstrain.
These factors are presented in Table 1 for Al2@lérnperatures 400 and 450 °C.

Table 1. Properties of Al2014 in forging temperat[ir5]

Temperature C(Mpa) h
400 °C 1.02e8 0.110
450 C 3.99¢7 0.126

2.3 Designing preformdie

In order to use equations (1) and (2) to obtaifiopne dies, the number of preform dies should be
given in advance. Therefore, Thomas techniqueas &3 obtain the number of preform dies for
H-shaped sections. Thomas divided H-sections inteet groups according to the ratio of the
height of the wall to its width as presented inurey4.
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Figure 4. The number and shapes of preform digs@ssed by Thomas

The ratio of height to width in the desired di&Ig; therefore, only one preform is required and 1
should substituten in equations (1) and (2):

X = Xq(1—m) + X,(m) (4)

Ve =Y,(1—-m) +Y,(m) (5)

In order to obtain the coordinates of the pointthefpreform die, the primary part and the die are
divided by lines with a length of 0.75 m; then, twordinates of the nodes are introduced into
equations (4) and (5). Therefore, for varidsbetween zero and one, various preform dies will
be obtained.

2.4 Investigating the parameters of designing

The parameters of designing the preform are dividedtwo groups; the first group includes the
input parameters by which the shape of preform dmesthe primary partwill be determined, and
the second group consists of the output paramebdesned after simulating the forging process,
by which the optimum preform model can be idendifi@he input parameters include the
coefficientK, the radius of the curvatures of the preform amghad the width of the raw part.
The values of these parameters are presented la Zab
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Table 2. The values of the input parameters

Width of the raw | The radius of the curvatures of t u?( .
. coefficient
part left and right angles of preform
0.1 300
0.2 301
0.3 100,100 301.5
0.4 302
120,80
0.5 302.5
140,60
0.6 303
160,40
0.7 180 20 303.5
0.8 ' 304
0.9 304.5
1 305

From the whole possible forms from Table 2 contayn(il0 * 5 * 10) = 500 samples, 75 samples
were randomly selected by Matlab Software for agialyin each of these 75 forms, the geometric
shape of the preform is varied according to kheoefficient and the curvatures of the angles;
besides, the dimensions of the raw part are alsed:arhen the forging process is simulated for
these 75 models, and the output parameters ingutim percentage of filling the die, the most
plastic strain of the raw part, and the highestiregl force are obtained for each model.

2.5 Smulation of Forging

In this study, ABAQUS Software 6.10 was used fonudating the process of forging. On this
software, the preform and final dies were modekedigid axisymmetric, and the raw part was
modeled as a formable axis. The analysis was dynamd explicit having the geometric non-
linear condition and the model of the raw part whsolutely plastic without any work hardening
in isothermal conditions. In order to mesh the ,paxisymmetric rectangle elements of reduced
integrating type with four nodes were used (CAX4R).

Coulomb friction model with friction coefficient di.3 was used in simulations. This value was
obtained for Al2014 at 400 C based on the Ring.Test

In cases which undergo a lot of deformation durthg process, the elements also deform
significantly. The complexity and distortion of thedlements may lead to stop solving the
problems; therefore, re-meshing is required foreramcurate analysis. Problems can be analyzed
faster and more accurate using the ALE comparatieshing method. While using this method,
the elements can move independent of the maténetefore, the quality of the elements remains
optimum during the process. In this method, onlg #ituations of the nodes vary and the
topology of the elements remains unchanged.

As mentioned before, there are 500 possible mdflege want to obtain the output for all the
inputs, the simulation will be very time consumirtberefore, the need is felt for a method to
appropriately predict the answers. There are vaneays to predict the process; however, since
the process contains various and numerous outglinguit parameters, the intelligent technique
of artificial neural network is used. In this medhohe outputs for several random inputs are first
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given to the network, which is called training thetwork. Thereafter, the network predicts the
outputs for new inputs by itself. As mentioned befesince the number of the input and output
parameters are high and they have different strestiy5 models are used to train the network.
This number was obtained by trial and error. By udating the process of forging, output
parameters are obtained for these 75 models, a@ktlral network is trained.

2.6 Artificial neural network

An artificial neural network consists of a set @hputational elements called neurons, which
function as biological neurons. This network cascdver the innate relationships between the
data without any pre-knowledge. Therefore, neuetivorks are used to implement complex
functions in various fields including pattern rendmpn, identification, categorization, speech and
image processing, and control systems. Nowadaysaheetworks are used to solve difficult

problems which cannot be solved by human or siropheputers.

The most important issue in using this method s@gieng optimal network according to the type

of input parameters. Various factors are effectivelesigning a network, including the type of

the network, network training algorithm, the fulctiof error, the number of layers, and the
number of neurons in each layer.

2.6.1 Type of the network

With regard to previous studies on neural netwofked forward network was selected for
forging. In this type of networks, the neurons eo&nected with each other in a way that the
neurons in medium layers receive their input frdhthe neurons in the lower layers —usually the
layer of input neurons. Therefore, in a feed fodvaeural network, signals move from one layer
to the upper one until they reach the final lay@riol is the output of the neural network. Figure
5 illustrates a two-layered feed forward network.

Input Hidden Layer Output Layer
r N7 N A\
al E[3=}r
IWLL'\ ?LWEJ-\‘ BTG
4x2 o 7( x4 n
j 4xl j 3x 7£
bt 1=p b2
+x1 3x1
i T -y,

Figure 5. A two-layered feed forward network

2.6.2 Training algorithm

In order to train the network, the algorithm wagsdisfter propagation, which is a systematic
technique to train multi-layered neural networksl & used in most networks. In case of feed
forward networks with back-propagation, Batch TwmagnMethod is usually used due to the

diversity of its training algorithms and faster gwergence. There are various methods for batch
training of neural networks, one of the most comnmunwhich is Levenberg-Marquardt
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Algorithm. In this algorithm, the error function @pproximated as a second-degree multi-
statement using Taylor's Expansion, and then th@&mum function is found. In fact, this is a
variation of Newton’s Classic Algorithm which isagsfor finding solution for problems which
need minimizing. This algorithm is applied in desigy networks, using train function.

2.6.3 Network error function

According to previous studies on artificial neunatworks, the most common and the best error
function is the MSE function. On the other hands tlunction is a criterion to measure the
training and performance of the network. Perforneaacd training mean how well the network
can present logical and acceptable responses tmphés by which it was trained and to new
inputs. MSE is the square of the errors betweemaaleand desired outputs of the output layer. In
back-propagation, this value is used as the tdogetion, and network weights are considered as
the function variable.

2.6.4 Excitation functions

With regard to previous studies and the appliedhotit the only necessity for excitation
functions is to be derivative everywhere. Figurd&trates the common excitation functions in
designing neural networks.

a= PH?’L‘“H”H d= (ﬂfu‘fqu;” ;
s a = logsig(n)

Figure 6. Common excitation functions in neurawaks

With regard to the inputs and the expected output$ the chosen network in this study, in
designing the desired network, Hyperbolic Tangetitaon function was used in hidden layers,
and linear excitation function was used in the lagtr.

3. Reaults

3.1 The number of layers and the number of neuronsin each layer

The number of hidden layers and the number of meuro each layer are among the factors
determined by the user while modeling. However specific method has yet been proposed to
determine the appropriate number of hidden layed @meurons; hence, these numbers are
determined by trial and error. Therefore, in a niodeprocess, various structures of neural

network are assessed by varying the number of hiddgers and neurons. Optimal neural

network is also selected based on this method degpaicertain parameters including network

error, implementation time, and the correlation wesin the inputs and the outputs.
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Characteristics of the designed neural networkeémh output parameter are presented in Table

3.

Table 3. Characteristics of designed networks

Output parameter

Filling percentage for Maximum plastic

Maximum

final die strain required force

Feed forward Feed forward

Network type Feed forward
No. layers 3 3 3
Network structure 1,85 1,20,15 1,18,12
Training . . .
. trainim trainim trainim
algorithm
Excita_tion tansig-purelin tansig-purelin tansig-purelin
function
Error function MSE MSE MSE
MSE 0.0000000021 0.0000546 0.00000047
Correlation 0.923 0.945 0.989
coefficient
Minimum error -0.11 -0.1 -0.06
Maximum error 0.15 0.02 0.02

Figure 7 provides a schematic representation otigsggned network for the output parameter of
filling percentage for the final die. Figure 8 sk®wrror changes after normalization and the
reverse normalization for the output parameteillifig percentage of the final die for a network

with three layers and 1, 12, and 18 neurons.

Hidden Layer 1

Hidden Layer 2 Oulput Layet

g g

Figure 7.Network with two hidden layers
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Figure 8. Error distribution for filling percentagéthe final die in networks 1, 12, and 18

For every neuron in the output layer, the coeffitief correlation between the real and desired
outputs obtained during a cycle is calculated ftbenfollowing equation:

1 Y(0-0)(d-d)
=5 7 =7
Q[X(0—0) " X(d—d)7]1/2

where
r is the correlation between real and desired dstpu
Q is the number of training pairs in informatioass
O is the number of real output from the neural cell
0 is the average number of real outputs from theaiee!
d is the number of desired output from the newglll c

(6)

d is the average number of desired outputs from ¢ueat cell

Figures 9 and 10 show the correlation diagramsHerfilling percentage of the final die and in
normalized mode, respectively. It is notable tleathe coefficient of correlation is closer to one,
the designed network is more accurate. As can & isethe figures, this coefficient is very close
to one, which shows that the number of layers autans and the training algorithm are very
well selected and the network is trained approglyat
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Figure 9. Correlation coefficient in training stage

Test: R=0.98953
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Figure 10. Correlation in test stage

3.2 Selecting optimal model

There are various methods for selecting optimal ehading output parameters. In this research,
the models were firstly numbered 1 to 500. Theh,tled models were graded per various
parameters and a coefficient of influence was cw@red for each parameter. Thereafter, the total
points of every model ware calculated, and thenogtimodel was selected based on these points;
consequently, the preform die of the model wascsedieas the optimal preform.

The manner for grading the models is as follows:

The filling of the final die should necessarily between 99.90 to 100 % because in these states
the final die is completely filled. It should be nti®ned that the models with filling percentages
below 99.90 were not acceptable and were ignored.
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The coefficient for the highest plastic strain is&nce plastic strain is a negative factor, the
model with the highest strain was given 1 and the with the lowest strain was given 500
points. Then, these points were multiplied by 2.

The coefficient of the highest force is 3. Sinces tis a negative factor, the highest force was
given 1 and the lowest force was given 500 poifiten these points were multiplied by 3.

The coefficient of the width of the raw part is&nce the length and the height of the part are
constant, by increasing its width, the load offiliet is also increased. One of the most effective
parameters in forging is the load of the filletettéfore, the coefficient of 5 is considered fosthi
parameter. This parameter is also a negative fattterefore, the highest width received 1 and
the lowest received 500 points. Then these poietewmultiplied by 5.

Table 4 presents the characteristics of 10 modgtls tive highest points. These models indicate
the first 10 preferences for the preform die angl fitet for forging and the desired final die.
Accordingly, the first model is selected as theropt model. Figures 11 and 12 show the counter
of plastic strain and the filling percentage of fimeal die in axisymmetric mode for forging
without preform die and forging with optimal prefodie, respectively.

Table 4. Proposed preferences for preform andiltbe f

preference (mm) Fillet K (mm) Width % AREA PEEQ (e8N) Force Total grade
1 120 0.1 303.5 99.948 6.534 2.049 3324
2 160 0.3 303.5 99.966 10.374 2.020 2732
3 160 0.5 304 100.06 9.264 2.049 2633
4 180 0.8 303 99.936 5112 3.370 2577
5 120 0.9 304.5 99.952 7.896 2.124 2571
6 120 0.1 304.5 99.931 6.230 2376 2539
7 100 0.3 303.5 100.095 6.017 2.794 2537
8 100 0.4 303.5 99.948 7.393 2614 2523
9 100 0.1 304.5 99.986 4515 2.44 2522
10 160 0.9 303.5 100.044 7.230 2.65 2504
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Figure 11. Plastic strain counter and filling pertege of the final die for forging without prefouie

PEEQ

(Avg: 75%)
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+6.114e+00
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+5.020e+00
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+2.284e+00
+1.737e+00
+1.190e+00
+6.428e-01
+9.568e-02

Figure 12. Plastic strain counter and filling pertegye of the final die for forging with optimal fioem

Figures 13 and 14 show the cross section of thefpathe first preference (optimal model) by
the end of preform stage and by the end of finalstiige, respectively.
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Figure 13.Cross section of the part after applying preforesdor the optimal mod
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Figure 14 Cross section of the part after applying final fdiethe optimal mod

3.3 Validating the findings

In order to examine the accuracy of the predictalas and also to obtain the error lim
forging was simulated for th10 preferences in Table dnd the results of simulation we
compared with those of the neural netwcFigures 15 and 16hsw the most plastic strain a
the highest required force in simulations with ABB® software and neural netwc
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Figure 15. Maximum plastic strain obtained in tways
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Figure 16. Maximum required force obtained in tways

As can be observed, the designed neural network baster accuracy in obtaining the maximum
plastic strain while in predicting the maximum regd force, it is vice versa. The average error
of prediction by the neural network and limited qanent solution is 2% for maximum plastic
strain and 8% for maximum required force. The radso higher error of the neural network in
predicting the maximum force is the sudden changdsis parameter. However, the accuracy of
both methods is acceptable, and the results aick val
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4. Discussion
The study discussed various parameters, and thhalmaiwork technique was used to predict the
forging process. Neural networks are superior feelotcommon systems; however, they are
concerned with certain imperfections, the mostifigant of which are mentioned below:
1. There are no specific rules or principles to designnetwork for an optional application.
2. In case of modeling problems, one cannot understiaghysics of the issue solely by
using neural network. In other words, it is usuathpossible to relate the parameters of
the network to those of the process.
3. The accuracy of the findings is significantly degent on the size of the training set.
Training the network can be difficult or even impitxe.
5. Predicting the future performance of the networet ganeralizing its performance are not
simple tasks.

»

5. Conclusion

The present study was aimed to offer a comprehenmsiethod to design preform dies based on
backward deformation and limited element and absohitain the preforms for a given die. From
among the obtained preforms, 75 models were randaelected to train the network, and
forging was simulated for these 75 models on ABAQddBware. Afterwards, the best neural
networks were designed for the output parametetsveare trained using the data on the 75
models. Then, the models were ranked using weigéfficients, and the first 10 preferences
were selected. In order to examine the accuradiieohetwork, forging was simulated for these
10 models using ABAQUS software. Comparison of ridsults of simulation with those of the
neural network confirmed the accuracy of the desigmeural network.

The major achievements of the present study cautmnarized as follows:

1. Presenting a comprehensive method for the desidginegberform die in forging based on

backward deformation and limited element;

2. Examining the parameters of filling percentagehs final die, maximum plastic strain,
and maximum required die per perform die defornmatind the size of the part;
Simulating the multi-step forging process using ABAS software;

4. Investigating various types of neural network t@ige the best network with minimum
error and the highest correlation;

5. ldentifying the best network for predicting the graeters of filling percentage of the final
die, maximum plastic strain, and maximum requi@dd;

6. Ranking the perform dies and various sizes of #retp optimize forging process.

w
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