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Abstract

This paper presents an improved version of thelartiask-space control of robots uses an adaptive
Taylor series uncertainty estimator” by designingnare general framework for dealing with
actuator saturation. There are four important issateout the aforementioned article. Firstly, the
saturated and unsaturated regions have been diskcgeparately in that article, while this paper
presents a unified approach for stability analySecondly, the linear parameterization of unknown
multi-variable vector-valued nonlinearities repragel in the aforementioned article is not true.
Consequently, it will affect the stability analysignificantly and the obtained results are doubtfu
Thirdly, although the tracking error is boundedhe saturated area, it may be unacceptable due to
undesirable performance. Thus, performance evaluats needed to verify the satisfactory
operation of the control system. However, in therefhentioned article, performance evaluation
has not been presented. Fourthly, the aforemertipaper applies the Taylor series as a universal
approximator without verifying the conditions ofthliniversal approximation theorem. This paper
proves that the Taylor series can satisfy the ¢mmd of this theorem. All these four important
issues are addressed in this paper and a mod#isibwn of the aforementioned article is presented.

Keywords
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1.Introduction
As pointed out in the paper [1], function approxifma methods such as neuro-fuzzy systems [2-4],

Taylor series [5], differential equations [6, 7hUfier series expansion and Legendre polynomials
[6-14] have been utilized in robust adaptive cdnttb many nonlinear systems. Among these
uncertainty estimators, Taylor series expansionthassimplest structure [5] due to fewer tuning
parameters. In [1], a third-order Taylor series agion has been considered as an uncertainty
estimator. The Taylor series coefficients are tubaded on the adaptation law obtained in the
stability analysis.

Although designing a simple and powerful uncertaiestimator is of great importance, stability
analysis and performance evaluation in the presehaéeput constraints (actuator saturation) are
more crucial and challenging in control engineerilbe considerable point is that the proposed
approach in [1] does not give suitable stabilityalgsis for the overall control system. It uses the
boundedness of the saturated signal to prove thalist and boundedness of the closed-loop
internal signals. It is worth emphasizing thathe saturated area of the control input, the cdetrol
operation does not influence the plant since theators (electrical motors in robotic systems) are
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driving the system by their maximum value. In tlegndition, although the tracking error is
bounded [15], it may be unacceptable due to uriaat@y performance. Nevertheless, the stability
analysis presented in [1], does not address theasatl area properly. Another important issue is
that in [1], stability is analyzed separately inusated and unsaturated operation areas. However,
the stability of the closed-loop system may nogbaranteed through these separate analyses, since
transitions from saturation area to unsaturated arel vice versa are neglected. Furthermore, it
must be noted that the linear parameterization oknawn multi-variable vector-valued
nonlinearities represented in [1] is not true. Tieason is that the respectable authors have
considered them as single-variable functions.

The objective of this paper is to modify the premaesults on the controller design and robust
stability analysis of the work proposed by [1]. Towerall closed-loop system composed by the full-
actuated robotic manipulator fardegrees of freedom and the proposed controllpraged to be
Uniformly Ultimately Bounded (UUB) stable, whiledlremained signals are bounded. Moreover,
performance evaluation has been presented to \bafythe norm of the error vector defined for the
difference of actual and estimated Taylor seriedfaments converges to small values.

This paper is organized as follows. Section 2 lyipfesents dynamic modeling of the robotic
system including the robot manipulator and the @eremt magnet DC motors subjected to actuator
saturation. Section 3 explains the function appration technique using the Taylor series
expansion. Section 4 presents the controller destgnario. The stability analysis and performance
evaluation are presented in section 5. Finallyctating remarks are drawn in section 6.

2. Dynamic Modeling
Consider am-link manipulator driven by geared permanent ma@@tmotors with voltages being

inputs to amplifiers. As in ([1]), the dynamics alescribed by

D(@)d +C(a,9)a +9(a) =7, —7¢(a) (1)
J Ig+B, r'g+rr, =K |, 2)
RI,+LI, +K r'q+¢=v(t) (3)

Where the parameters are defined exactly similafl{o Note that vectors and matrices are
represented in bold form for clarity. Now, the dithiion of (2) into (3) yields the following ovdta
dynamic of electrically driven robot

RK 1 rg+(RK B, +K ) g+RK Tt +Li_ +@=v(t) (4)
For practical situations, the actuator input vada@re subjected to some constraints, called motor

saturation limits. This occurs usually between ¢lput of the controller and the PWM module
[16, 17]. Following the same notation as in [1]; fee development of the controller in this paper,

we assume that the relation between the actuah@cts input(v(t) J0")and the control signal
produced by the controllgu(t) JO") is given by

v(t) =h(u(t)) (5)
Whereh (1 { ))JO"is a continuous nonlinear function representingstiteiration nonlinearity or its
approximation. As shown in [17], the non-implemehtontrol signal of the actuators can be
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expressed as

C(u(t)) = u(t) —h(u(t)) (6)
Now, substituting (5) into (4), and using (6) wevda

RKJ r'g+(RK B, +K ) g+RK Tt +Li_ +¢#=u®)-OU@) (7)
Remark 1: The control input given by (5) indicates that thetan voltage is limited, that is

V(]S Uppa (8)

Wherev (t) stands for the' entry of vectorv(t) andu,_ ., is a positive constant representing the

max
maximum permitted voltage of th® imotor. As a resultig 00", ¢ 00", andl, 00" are bounded.
This is a result of BIBO stability ([6]).

2.1 Kinematic Analysis
Concerningn-joint coordinateg, andm-task coordinates, the kinematics of the manipulator can

be described with the following equations ([7]):

X=¢q) 9)
x=J(a)q (10)
x=J(a)g +J(a)qg (11)

Where ¢ is anmdimensional vector function representing directeknatics, J(q) 0™ is the
Jacobian matrix defined akp/0q, and the upper dot denotes its time derivativehWiis in mind,

the equation for robot system motion in the joipace, (7), can then be represented as Cartesian
space coordinates based on the following relatipnsh

g =Js(a)x (12)
6=J.(a)(x-J(a)q) (13)
WhereJ (q) OO™™ represents the generalized inverse of the Jacohgarix and it is defined as
J5(@) =3"(@)(@I" (@)™ (14)
Now, substituting (12) and (13) into (7) yields

M ()X +N(x, X)X + G (x) = w(t) (15)
Where

M(x) =35 (@)RK 1J,r ~J4(a)

N(x,%) =37 (@) (RK 1B, +K,)r " =RK 13,1 ,(0)3(a)) I (@) (16)

G(x) = IL(@)(RK Tt +Li, +4+dzn(u(t),Ups)

And w(t)OO™ represents the new control input in the task sphoelevelop our control scheme,
assume that Equation (15) can be represented legand-order nonlinear differential equation,
called "available model" as

X +F =w(t) (17)
Where F:((M(x)—l)5(+N(x,>‘<)>'<+G(x))DDm is referred to as the lumped uncertainty, also
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| JO™™and 0O0O™™ are the identity and zero matrices, respectively.

Remark 2: The last representation (Eqg. (17)) does not sisnphie control problem. It can be
interpreted as a standard computed torque-condreifstem, when there is no knowledge about the

controlled robotic manipulator il (x)=I and N(X,X) :é(x) =0. This is the most conservative
choice with(") denoting an estimated value @J ([8]).

Remark 3: Some previous valuable published works have etqudihe universal approximation
property of Neural Network (NN) to actuator nonknges compensation, ([18-20]) although the
problems originated by NN and Fuzzy approachesesiigt, as mentioned in ([21, 22]).

3. Function Approximation Using Taylor Series
Uncertainty estimators are not confined to fuzzgtems and neural networks. In the calculus

courses, it is well known that, given a functigr) and a pointa in the domain of, suppose the
function isn-times differentiable a, then we can construct a polynomial

| (p)
f(x) = Z%(x—a)p (18)
=

Where f,(x) is called thdth-degree Taylor polynomial approximationfadta. It is interesting to

investigate the capability of the last Equation,u&dippn (18), from a function approximation
capability point of view. Herein, we will prove thBquation (18) has the universal approximation
capability. In the following, we suppose that thput universe of discourdeis a convex set il .
First, we need the following useful theorem.

3.1 Sone-Weierstrass Theorem [ 23]
Letobe a set of real continuous functions on a cone¢X.df

1. The setois algebra, that is the seis closed under multiplication, addition, and scala
multiplication;
2. The seto separates points af i.e.

Ox, x0T ,x 2%, 0f&)0o @ f k)% fk,) (19)
3. The setovanishes at no point df, that is,
OxOT ,0f x) Do : f )20 (20)
Then for any real continuous functiéfx) on T and arbitrarg >0, there exists a functiofi(x)in
osuch that
Sjp| fl (x)-f (X)| <& (21)
xar

Propositionl. (Universal Approximation Theorem)
Let f(x) be a continuous real function on the convexTs@t] . Then for each arbitragy>0,

there exists a function in the form of

74



Journal of Modern Processes in Manufacturing awd &stion, Volume 7, No. 4, Autumn 2018

L £(p)
[(9=Y & (x-a)° (22)
p=0 p
Such that
f(p)( )
Sjpz ” (x-a)P-f(x)|<¢ (23)
p=0 P

Proof of propositionl: Letoto be a set of continuous functions Dim which T is a Convex set in
the form of (18). Now, suppode,(x) andf, ,(X) are given as

I (l)
fi (¥) = z ( )(X a)'
I (J)( a) _ (24)
I 2( ) Z . (X_a)J
We have
L f0 R A _
fi100+ £ (X) = Z ( ) x-a) +ZZT@) (x-a)’ (25)
L f® _ L fU)(7 _
fi1(X).f, 2(%) :[Z L i!(a) (x—a)'J{ 2 ZT@) (x—é)‘J (26)
Hence,f, ,(X) + f, ,(X)Oo andf, ,(X).f, ,(x)Jo. Furthermore, for any arbitraky1[] , we can get
0 _
K., (X) :le/( ) (x-a) (27)

Which is also in the form of (18). So, accordind26) to (27), we can conclude tloas an algebra.
Therefore, the first condition of the Stone-Weierss theorem is satisfied r Now, we show that

o separates various points ®nChoose the parameters §{x) in (18) as:

| =1, a=0 (28)
Since X% #X,, then f(0)+ f®P(Q)x # f (0)+ f ¥ (Qx,, which can be simplified tox, # X,.
Therefore, the second condition is also verifieal show thab vanishes at no point di, we simply
observe that any function in the form of (18) wiftfa) #0 and f (" (a) =0for p=1,..,I has the
property of

OxOT , f, x)>0 (29)

Hence,ovanishes at no point df. Thus, the three conditions of the Stone-Weiessttheorem are
satisfied. Therefore, the result follows by thert&tdVeierstrass theorem.

4. Adaptive Uncertainty Estimator
In this section, actuator saturation compensat®rtansidered to achieve satisfactory tracking

control of robots as an extended form of ([1]). Bus purpose, the robust control law is proposed
as
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W(t) =X, +Ky(Xg =X) +K (X4 _X)""E (30)
where x, 00O™,x, 00™, and X, 00 are desired position, velocity and acceleratiorhia task
space, respectivelyk , O0™™and ky, OO™™are the feedback gain matrices usually selected as
diagonal, andFO0O™ is the estimated value df. Substituting (30) into (17) and some simple
manipulation lead to

X+k X+k X =F-F (31)
Wherex O O™is the tracking error defined by

X=Xy =X (32)
It must be emphasized that the development of tbpgsed control law is under the assumption
that complete information of the actuator and raibptamic is not available (i.e., we have not any
knowledge of plant parameters or datasheet whielpeovided usually by the manufacturer). Such

an assumption has been previously utilized in (2=]). With this in mind, a first-order Taylor
series expansion, neglecting the higher-order temmils be used to represent the uncertainty

estimatorF as (I1n

|3:|30+g—§ >~(+g—§ X (33)
(0,0) 0.9
To estimate the matrix of coefficients, (33) isnegented as
F=AT (34)
WhereA andg are expressed as
‘A, 0 0 - 0 |
0 A, O
AT=l: 0 A, @ 1 |opme@d (35)
A, O
0 0 0 A,
2+m
g=ly’ -y’ ogeémm (36)

andy=[1 X' &' ] OO,

Remark 4: The 2 order term can no longer be expressed in matnim fas it requires tensor
notation. This is the main weakness of Taylor seggpansion for multi-variable vector-valued
functions.

Suppose thd& can be modeled as

F=A"¢+¢ (37)

(2m2+m)><m :

Where ¢ J0™ is the approximation error and matrix ] is a block diagonal constant
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matrix. The dynamics of tracking error can therneRpressed by substituting (34) and (37) in (31)
to have

X+kgX+k x=ATg+e (38)
Where A = A - A 0@ ™™g the parametric estimation error. DefiAg B, andE as
0 I 0
A= oo™ B=| |007™™ E=|. Xlogm (39)
Kk, Ky | X
Hence, equation (38) can be written in the follayvitate equation form.
E=AE+BA'¢+Bs (40)

5. Stability Analysis and Performance Evaluation
To proceed with subsequent stability analysisfolewing assumption is required.
Assumption 1. The desired task-space trajectories and their terevatives are in., space, i.e.

(XdiXd |:H_oo)

5.1 Sability Analysis
To study the stability and analyze the performaofcine closed-loop system, choose the following
positive definite function:

V(E,A) =E"SE+Tr(A'T"A) (41)
Where SO0?™?"js the solution of Lyapunov Equatioh’ S+SA +Q =0, Qis a positive definite

matrix, andl 00@™ *™<@n*+m s 5 hositive definite weighting matrix relatedtte adaption laws.
The last function has the following upper and loweunds which are crucial within the analytical
setting in this work:

V(E,A) £ Ao O)E[ + A THTF(ATA) (42)
V(E,A)2 A (E[ + A TH)Tr(ATA) (43)
Where A, () and A () denote the smallest and the largest eigenvalu¢g pfespectively. The

min min

time derivative of (41) along the trajectory of tgya (40) yields

V(E, A) = -E"QE +2E"SBATE + 2ETSBe - 2Tr (ATTA) (44)
Now, select the updated law usiogmodification as
A=T(EE"SB-0A) (45)

Where o is a positive scalar. Consequently, substitutingdfign (45) into (44) and using some
mathematical calculation result in

V(E, A) = -ETQE + 2E"SBe + 20Tr (AT A) (46)
To obtain definiteness of (46), one can simply prmat the following inequalities are hold
1 SB
~E"QE+2E'SBe < _EA”““ (Q)||E||2 ((Q) )|| I° (47)
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2Tr (ATA) < Tr(ATA) -Tr(ATA) (48)
Where o..(0) is the maximum singular value ¢f) . Together with these relationships, (46) may
be rewritten as:
202 (SB), 2
oy el
One can easily relate (49)Voby considering (42). Then, (49) can be further reem as

V(E,A) < -3V +(M, (9 - Am.n(Q)) =

V(E, A) < —%Amin(Q) ||E||2 —oTr(ATA) + +0Tr(ATA) (49)

min

2 (50)
HA\_ (T =) Tr(ATA) +23'L(5m||8||2 +OTr(ATA)
Wheredis a constant that can be selected as
: Q) g
J < min{ Zmin 51
{ 2s(S) A ) &)
Then, (50) simplifies to
V(E, A) < -0V +20L(SB)”8”2 +0Tr(ATA) (52)
/‘min (Q)
This impliesV(E, A) <0 , which is satisfied whenever
Do) E i 7ex(SB) -
(E,A)0Q={(E,A)| V> 5/‘ Q) —ma— suge ¢}| += TrQ& A) (53)
min tos7

Hence, we have proved th&E, A)are uniformly ultimately bounded. Using the Assuioms (1)
and boundedness @ , it can be concluded from the stability of theseld-loop system that the

task-space velocity vectok is bounded. From (12), it follows tham:I;JS(q)th+q(O).

Therefore, for finite operational times, the jopdsition qis bounded. These results together and

also remark 1 prove the stability of the closedsl®ystem. Note that the size of the $ktis
adjustable by proper selections of the paramefets, @ , S, andQ .

5.2 Performance Evaluation
The above derivation only demonstrates the bourek=daf the closed-loop system, but in practical

applications, the transient performance is alsgreft importance. For further development, the
upper bound fol/(t) can be computed by solving the differential indifwaf V(E, A) in (52) as

V(1) et 0v(t) + JAZT:EQ))Sig le@)” +%Tr (ATA) (54)

Using the inequality (43), the upper bound "‘Eﬂz can be calculated as

e < YEA)

(S (59)
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With (54), this can be further written as

V(ty) M o> (SB) oTr(ATA)
[El< S +\/5/1mm(8)/1mm(Q) t0<rp|| e )+ ,/—&mm(s) (56)

This implies that the magnitude {f| is bounded by an exponential function plus somestmts.

This also implies that by adjusting controller pagders, the output error convergence rate can be
improved. As a consequence,

2
TEE \/ 200(B) _ g oy + [TTHAA) (57)
toeo 5/‘min (S)/‘min (Q) fo<r<t &min(s)

Considering the Frobenius norm definitio#[\”i =Tr(ATA)), one can also obtain the following

bound for the weighting vectok .

< 522 sl (IO
&mn(r )Amln (Q) to<7<t mln(r )

(58)

6. Conclusion

This paper improves stability results of the robadaptive controller proposed by “task-space
control of robots using an adaptive Taylor seriesautainty estimator” considering actuator voltage
input constraint. A general stability analysis heeen presented that considers the saturated and
unsaturated regions of the control input simultarsgo It is shown that the joint position and
velocity tracking errors is UUB stable in agreensewith Lyapunov direct method in any finite
region in the state space, while the other siginailse system remain bounded.
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