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Abstract 
This paper presents a robust fractional order controller for flexible-joint electrically driven robots 
under imperfect transformation of control space. The proposed approach is free from manipulator 
dynamics, thus free from problems associated with torque control strategy in the design and 
implementation. As a result, the proposed controller is simple, fast response and superior to the 
torque control approaches. It can guarantee robustness of control system to both structured and 
unstructured uncertainties associated with robot dynamics. The control method is verified by 
stability analysis. Simulation results on a two-link actuated flexible-joint robot show the 
effectiveness of the proposed control approach.  
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1. Introduction 

Although torque controllers are frequently used for controlling robotic manipulators [1-6], the role 
of actuator dynamics considered by voltage control in some cases cannot be neglected. Indeed, 
torque controllers have some limitations coming from practical point of view as follows: 
-A torque control law cannot be given directly to the torque inputs of an electrical manipulator [7]. 
Because, physical control variables are electrical signals to the actuators not the torque vector 
applied to the robot joints. 
-The dynamics of motors and drives are excluded in the torque control strategies, [8], while the 
actuator dynamics are often a source of uncertainty due to e.g. calibration errors, or parameter 
variation from overheating and changes in environment temperature.  
-The control problem becomes hypersensitive when tracking the fast trajectories is demanded. 
Therefore, control performance degrades quickly as speed increases. 
-Some torque control approaches try to cancel the nonlinearities by using feedbacks from the joint 
torques. However, they face some challenging problems [9].  
Three customary approaches in this category: 
(I) Using reaction force in the shaft bearings  
(II) Prony brake method  
(III) Using strain gages in rotating body 
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Suffer from several inherent weaknesses. The first method is involved bearing friction and windage 
torques, which are not avoidable. The second approach requires some additional devices, which are 
not convenient. Finally, the third method is expensive with difficulty of installation.  
It must be emphasized that, torque-based controllers formed by fractional order differential 
equations, are not distinguished of these problems, although, they can provide wider options in the 
control design compared with the integer-order controllers [10-12]. To overcome these weaknesses, 
voltage control strategy was proposed [13]. This strategy is free from manipulator dynamics in a 
decentralized structure. All nonlinearities associated with robot dynamics are canceled by feedback 
linearization through feedbacks from motor currents. Following this strategy, robust control of 
flexible-joint robots was then developed [14-15]. However, fractional order form of them remains 
as an open problem. The considerable point, common in all aforementioned control strategies is 
performing the control laws in the joint space (JS), while the goal of many usual robotic tasks is to 
drive the tool center point of the arm to follow a desired path in the task space (TS). Thus, despite 
of well behavior of JS control strategies, none of them can provide satisfactory tracking 
performances in TS under the imperfect transformation of control space. Some of these reasons are 
as follow: 
-The robot’s kinematics and dynamics change when a manipulator picks up different tools of 
unknown length or unknown gripping points [16]. Therefore, the desired joint angles, their 
velocities, and accelerations are not produced precisely in JS under the imperfect transformation 
from TS to JS.  
-Tracking errors appear in TS while actuators operate in JS. Thus, transforming of control space 
should be carried out to perform a control law [17]. As a result, the control inputs involve errors if 
we use the imperfect transformation. 
-The produced TS tracking errors are not detectable and compensable appropriately due to lack of 
feedbacks from the end-effector.  
To deal with this problem, TS controllers were then developed using assumption of perfect 
transformation of control spaces [18-23]; however, there are still problems arises from TS dynamic 
formulation of robot manipulators, that involves strong couplings between the joint motions, the 
time derivative of jacobian matrix, as well as its inverse transformation. 
Due to aforementioned problems, raised from torque-based TS control strategies, a robust 
fractional-order controller is proposed that is free from manipulator dynamics. The proposed 
approach includes two interior loops. The inner loop controls the motor position using sliding mode 
control (SMC) technique, while the outer loop generates a desired motor position for the inner loop 

by a simple fractional PIDγ controller. The contributions of this paper are as follows. In section 2 
we recall some basic relationships for describing fractional order calculus. Nonlinear dynamic 
description is studied in Section 3. The overall control structure of the robust JS control design will 
be outlined in Section 4 and the closed-loop system stability is then presented in Section 5. An 
extension of the proposed JS control strategy is presented in Section 6. In Section 7 the validity of 
the proposed method is verified by computer simulation. Finally, we give our conclusion remarks in 
Section 8. 
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2. Fractional calculus 
In this section, some basic definitions related to fractional calculus are presented. Fractional 
calculus is a generalization of integration and differentiation to fractional order fundamental 

operator a tD γ defined as [24] 
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Where a and t are the bounds of the operation andγ ∈ℜ . There are three definitions of fractional 

integration and differentiation. The most often used are the Grunwald-Letnikov (GL) definition, the 
Reimann-Liouville (RL) and the Caputo definition [25]. The GL definition is as: 
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Where ( )f t is an arbitrary differentiable function. In addition, the RL definition is formulated as 
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For ( 1 )n nγ− < < , with ( )nΓ denoting the famous Gamma function, which is defined as 
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Moreover, the Caputo’s definition can be written as: 
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For ( 1 )n nγ− < < . Due to lack of space, further information about various approaches to 

fractional-order differentiation and integration can be found in the available literatures on this topic 
[25-27]. Nonlinear dynamic description is studied in the next section. 
 
3. Dynamics of flexible joint electrically driven robot 
The equations of motion for n-link flexible-joint robotic manipulator actuated by geared permanent 
magnet DC motors can be described as [28] 

( ) ( , ) ( ) ( )D q q C q q q g q K r qθ+ + = −&& & &  (6) 
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( )m m mJ B rK r q k Iθ θ θ+ + − =&& &

 

(7) 

( )bLI RI k t uθ φ+ + + =&&

 

(8) 

Where nq ∈ℜ
 

and 
nθ ∈ℜ  represent the link angles and motor shaft angles, respectively, 

( ) n nD q ×∈ℜ is the symmetric positive definite manipulator inertia matrix, ( , ) ∈ℜ& &
nC q q q is a vector 

function containing Coriolis and centrifugal forces, ( )∈ℜng q is a vector function containing of 

gravitational forces, 
×∈ℜn nK is a diagonal positive definite matrix representing the joint stiffness, 

r is an n×n transmission matrix , 
×∈ℜn n

mJ is a diagonal matrix of the lumped actuator rotor 

inertias, ×∈ℜn n
mB is diagonal matrix of the lumped actuator damping coefficients, 

×∈ℜn n
mk is an 

invertable constant diagonal matrix characterizing the motor torque constants, ∈ℜnI is the 

armature current vector, 
×∈ℜn nL is a constant diagonal matrix of electrical inductance, 

×∈ℜn nR is 

diagonal matrix of armature resistances, 
×∈ℜn n

bk is a diagonal constant matrix for the back-emf 

effects, ∈ℜnu is the control input voltage applied for the joint actuators, and( )tφ represents an 

external disturbance.  

For the convenience of representations, introduce the state variables1 =x q ,
 2 = &x q ,

 3 =x θ ,
 4 = &x θ  

and
 5 =x I . Thus, the motion equations (6)-(8) can be rewritten in the following state-space 

representation 

( ) ( )= + −x x B B& f u tφ  (9) 

Where 

( )

( )
( )

2
1

1 1 2 2 1 3 1

4
1

4 1 3 5
1

5 4

1

( ) ( , ) ( ) ( )

( ) ,

( )

0 0 0 0

−

−

−

−

 
 − − + − 
 =
 − + − + 
 − + 

 =  

x

B

m m m

b

T

x

D x C x x x g x K rx x

xf

J B x rK x rx k x

L Rx k x

L

 (10) 

 
4. Robust joint space control design 
In this section, we are interested in deriving a decentralized control law such that in the closed-loop 
system, the link angles track the desired trajectory with an acceptable error. For this purpose, we 
design a controller that includes two interior loops. The inner loop controls the motor position using 

SMC technique, while the outer loop generates a desired motor position dθ for the inner loop by a 

simple fractional PIDγ controller.  
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4.1 Inner loop control design 
Suppose that, the electrical subsystem of the actuator's dynamic can be rewritten as follows 

ˆˆ ( )bRI k t uθ η+ + =&  (11) 

Where( )⋅̂ denotes nominal value of( )⋅ , and 

ˆˆ( ) ( ) ( ) ( )b bt LI R R I k k tη θ φ= + − + − +&&  (12) 

It is the disturbance. Let us define a switching surface Sθ  as 

1
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With ( ) de t θ θ= − , and 1c
 
being a positive constant. This choice of sliding surface is preferred since 

it is linear and it will result in a relative degree one dynamic. Now, it must be founded a control 
input u such that, the motor state trajectory converges to the switching surface. Toward this end, 

differentiating Sθ with respect to time yields 

1 1 1
1

ˆ ˆ ˆˆ ( ) ( )d b b b cS k u k RI k t e tθ θ η− − −= − + + +& &  (14) 

Thus, the inner loop controller can be designed as 

( )1
ˆ ˆˆ ( )b d bcu RI k k e t sign Sθθ ρ= + + +&  (15) 

Where ρ
 
is a positive real constant which is determined based on bounding function on the 

uncertainties.  
Proof: First define a non-negative function as 

21

2
0V Sθ= ≥  (16) 

Differentiating (16) respect to time, and using (14) and (15) we obtain 

( )( ) ( )1 1ˆ ˆ( ) ( )b bV S S S k t sign S S k tθ θ θ θ θη ρ η ρ− −= = − ≤ −& &  (17) 

Now, the sufficient condition to establish 0V <&  is 

( )tη ρ<  (18) 

Thus, with the controller (15), the sliding surface becomes attractive. It must be emphasized that, by 
choosing the control law in the form (15), chattering phenomena will occurs as soon as the state-
trajectory hits the sliding surface, because of discontinuity in signum function. To reduce this effect, 
the following saturation function has been known to be useful in many applications 

( ) 1
( )

( ) 1
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 ⋅ ⋅ ≥⋅ =  ⋅ ⋅ <
 (19) 

Hence, the input voltage u  defined in (15) is modified as 

1
ˆ ˆˆ ( )b d bc

S
u RI k k e t sat θθ ρ

ε
 = + + +  
 

&  (20) 

Where 0ε >  denotes a small design constant, called the boundary layer of the sliding surface. This 
completes stability proof for inner loop control design. 



Robust Fractional Order Control of Under-actuated Electromechanical System,……….…………………..,pp.69-86 

74 

Remark 1: Compared with traditional torque-based SMC design, the proposed voltage-based SMC 
strategy doesn’t require to any prior-knowledge about manipulator dynamic and bounding functions 
on the robot parameters and uncertainties. In fact, the motor's current includes the effects of 
nonlinearities and coupling in the robot manipulator. 
 
4.2 Outer loop control design 

Here, the control objective is to design a desired trajectory dθ for the inner loop controller, so that 

dθ θ→  which further implies convergence of q  to the desired trajectory dq . Based on this 

observation, the outer loop is formed for tracking the joint position by suggesting 

0

( ) ( ) ( )    ,    t 0
t

d d p It t dK D E K E K Eγ σ σθ = + + ≥∫  (21) 

Where dK , γ , pK , and IK are the design parameters and 

( ) dE t q q= −  (22) 

Represent link position tracking error. Now, the voltage of every motor should be limited to protect 
the motor against over voltages. Therefore, by using a voltage limiter, we obtain 

max( )            ,        for u t v v v= ≤  (23) 

max max( ) sign(v)     ,    for u t v v v= >
 

(24) 

Where maxv  a positive constant is called as the maximum permitted voltage of motor and v  is 

expressed as 

1
ˆ ˆˆ ( )b d bc

S
v RI k k e t sat θθ ρ

ε
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 

&  
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5. Stability analysis 
Due to decentralized structure of the proposed controller, stability analysis is presented separately 
for every individual joint to verify stability of the robotic system. To this end, some assumptions are 
assumed to be valid throughout this paper: 
Assumption 1: The control law given by (23)-(25) implies that the motor voltage is limited, that is 

max( )u t v≤  (26) 

Assumption 2: The JS desired trajectory dq , the TS desired trajectory dX and their derivatives up to 

a necessary order are available and all uniformly bounded. 
Assumption 3: The external disturbance ( )tφ is bounded as 

max( )tφ φ≤  (27) 

Where maxφ is a positive constant.  

Since, the control laws given by (23)-(25), operate in two areas, i.e., maxv v≤ and maxv v> , 

therefore stability analysis, and tracking performance should be evaluated in both areas. 
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5.1 Area of maxv v≤  

In this area, we have 

1
ˆ ˆˆ( ) ( )b d bc

S
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Substituting the above equation into (11), rearranging with some mathematical simplification yields 
the error dynamic equation as 

1
1
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The variables θ& , I , and I&are bounded, since u is bounded [15]. These results, in addition to 
Assumption 3, obtains the function bounding the RHS of equation (29) as 
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Where max( )•  is a positive scalar function, representing the upper bound of ( )• , and 1ζ and 2ζ are 

positive constants and the upper bound of
 

ˆ( )R R−
 
and ˆ( )b bk k− , respectively. Thus, according to 

(29), ( )e t  and ( )e t&  are bounded, which also means boundededness of
 dθ& , whereas θ&  and ( )e t&  are 

bounded. By using (21), it is also verify that 
1 ( ) ( ) ( )d p I dt t tK D E K E K Eγ θ+ =+ + &&  (31) 

Which is a fractional order linear system with limited input dθ& . It can be easily show that, the 

output of ( )tE is bounded under limited input dθ& , if the fractional order linear system (31) be 

strictly stable. To this end we utilizes the following lemma from [29] 
Lemma: The system is BIBO stable, if  

arg( )
2i

απω >  (32) 

Where s αω = ,α +∈ℜ ,0 2α< < , and iω is the ith root of denominator of  transfer function

( ) ( )/ ds sE θ& .  

Proof: For stability analysis, generally, we derive the transfer function and then we study the 
location of the roots of the denominator. The transfer function is stable if the roots are in LHP [29]. 
Hence, the transfer function is in the form: 

1
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According to [29], every fractional order system can be expressed in commensurate form, in which 
the domain of the ( )G s  definition is a Riemann surface with ϑ  Riemann sheets, i.e. 

1 2/ /

1
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d p I

G s
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Where
 1ϑ ,

 2ϑ  and ϑ  are integers, and ϑ  is the least common multiple of
 
1 γ+  and 1. Therefore, 

using the procedure explained in [29, 30] we can choosing the control parameters γ ,
 dK ,

 pK and
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IK  such that, the closed loop poles to be in desired places, that means boundedness of E . From 

(22) and according to assumption 2, boundedness of q  can be achieved. Also, from (7), we have 

2
m m mJ B r K k I rKqθ θ θ+ + = +&& &  (35) 

Which represent a stable 2nd order LTI system driven by the bounded input
 mk I rKq+ . Thus θ , θ&

and θ&&  are bounded. From boundedness of θ  and ( )e t , it can be founded that dθ is bounded. Thus, 

with the same manipulation similar to (33) and (34), boundedness of( )E t& can be achieved that 

means boundedness ofq& , whereas the desired trajectory dq&
 
is bounded. Now, since all statesθ ,θ& ,q

,q&  and I  associated with each joint are bounded, then vectors θ , &θ ,
 
q ,

 
&q  and I  are bounded. As 

a result, the robotic system has the Bounded Input-Bounded Output (BIBO) stability.  
 

5.2 Area of maxv v>  

In this area, we have 

max( ) sign( )+ + + =&&
bLI RI k t v vθ φ  (36) 

To consider the convergence of tracking error ( )e t  in this area, a positive definite function is 

proposed as 

21
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2
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The differentiation of V  is 

( ) ( )=& &bV k e t e t  (38) 

From ( ) = −de t θ θ  and using (36), we have 

( )max( ) ( ) sign( )= + + + −&& &
b dV e t k LI RI t v vθ φ  (39) 

Assume that, there exists a positive scalar denoted by σ  that 

( )+ + + <&&
b dLI RI k tθ φ σ  (40) 

Thus, to establish the convergence, 0<&V , it is sufficient that 

maxsign( )= sign( )v v eσ  (41) 

Proof: Substituting (41) into (39) yields 

( )( ) ( ) sign( )= + + + −&& &
b dV e t k LI RI t eθ φ σ  (42) 

Now, for &V  to be a negative definite function, the requirement is (40) 
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Thus, the motor tracking error is converged until the control system comes into the area governed 

by control law (23). As a result, even if the robotic system starts from the area of max>v v , it goes 

into the area of max≤v v , that all states are bounded. Equation (41) means that 

max=v σ  (44) 

Therefore, the maximum voltage of motor should satisfy (44) for the convergence of motor position 
tracking error ( )e t . From the closed loop system (36), we can obtain 

maxsign( ) ( )+ = − −&&
bLI RI v v k tθ φ  (45) 

The RHS of (45) is bounded as 

max max max maxsign(v) ( )− − ≤ + +& &
b bv k t v kθ φ θ φ  (46) 

Thus, from (45), it is guaranteed that output I  is bounded. From boundedness of I , one can imply 

that, the linear stable system (35) is bounded under bounded input +mk I rKq  which result in 

boundedness of variables θ , &θ , and &&θ . With the same procedure as (33) and (34), boundedness of 
&E and so &q  can be derived. Since all states θ , &θ , q , &q  and I associated with each joint are 

bounded then vectors θ , &θ , q , q&  and I are bounded. Thus, the robotic system has the Bounded 

Input-Bounded Output (BIBO) stability. 
 
6. Robust task space control design 
As mentioned before, despite of well behavior of JS control strategies, none of them can provide 
satisfactory tracking performances in TS under the imperfect transformation from Cartesian to joint 
angles. For this reason, here, we will improve the outer-loop of the aforementioned JS controller to 

track a desired trajectory in TS. Let us 
nX ∈ℜ to be a TS vector, representing the position and 

orientation of the robot end-effecor relative to a fixed user defined reference frame. Then, the 
forward kinematic and differential kinematic transformation between the robot links coordinates 
and the end-effector coordinates can be written as 

( )=X h q  (47) 

( )=& &X J q q
 

(48) 

Where ( ) : n nh q ℜ → ℜ
 

is the differentiable forward kinematics of the manipulator, and 

( ) n nJ q ×∈ℜ  denotes the Jacobian matrix defined as ( ) ( ) / n nJ q h q q ×= ∂ ∂ ∈ℜ . Let us define the TS 

tracking error as 

= −x dE X X  (49) 

Where, dX is the desired TS position vector. Now, we propose the outer-loop controller in the form 

( )1 1

0

( ) ( ) ( )ˆ ( )   , t 0− += + + ≥∫ &

t

d d x p x I xJ q K D E K E K E dγθ τ τ τ τ  (50) 
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A block diagram of the proposed control approach is depicted in Figure 1. By stability analysis, 
similar to previous section, we show the closed-loop system stability. Toward this end, tracking 
performance is evaluated in both areas.  
 
6.1 Area of maxv v≤  

As was done in previous section, one can show that the RHS of (29), ( )e t  and so ( )&e t  are bounded. 

Thus, boundedness of &dθ  can be achieved. Differentiating both sides of (50) with respect to time 

gives 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Schematic diagram of the proposed control system 
 

1 ˆ+ + + = &&
d x p x I x dK D E K E K E Jγ θ  (51) 

Which is a fractional order linear system with limited input ˆ &dJθ , whereas ̂J , and &dθ  are bounded. 

By the same analysis similar to section 5.1, we can obtain boundedness of xE , and so X , which in 

turn means boundedness of q according to (47). As a conclusion of this analysis, the robotic system 

has the BIBO stability in this area, since all of system states are bounded. 
 

6.2 Area of maxv v>  

It can be easily show that, by choosing a positive definite function, as (37), starting from an 

arbitrary initial (0)e under the condition (44), concludes reducing the value of ( )e t . Thus, motor 

voltage will move to the area of max≤v v  which all signals are bounded. As a result of this 

discussion, boundedness of θ , &θ , &&θ , and I  can be achieved as same as before. Rewrite Equation 

(51) as a fractional commensurate form as (34) with limited input ˆ( ) &dJ q θ . Thus, xE , and &xE are 

bounded. From = −x dE X X , = −& & &
x dE X X , and using Assumption 2, it follows that X , and &X

are bounded. This completes the proof of the closed-loop system stability. As a conclusion of this 
analysis, the robotic system has the BIBO stability. 
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7. Computer simulation 
The robust performance of the proposed control strategy was verified through simulations of a two-
link electrically driven robot manipulator with flexible joints, uncertainties in the motor dynamics 
and without requiring the information of manipulator dynamic. The parameters for the motion 

equations in the form (6) with link masses 1m , 2m , lengths 1l , 2l , link angular positions 1q , 2q , 

and link's moment of inertia 1I , 2I are 

( ) ( ) ( )

( ) ( )

( )

2
2 1 2 2 1 2 211 12

2
21 22 2 1 2 2 1

1 1 2 1 1 2 2 1 2

2 2 1 2

2 2 2
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d d m 2
2 2 2 1 2 2 2

2
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( )+ +

= +
c c

c
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(52) 

Where cil  represent the distance between the center of mass of link and the ith joint. For the 

convenience of simulation, the nominal parameters are given as 1 2 1= =l l m , 1 2 0.5= =c cl l m , 

1 15=m kg and 2 6=m kg , 2
1 5 .=I kg m and 2

2 2 .=I kg m ; Also, the exact-actuator dynamic model 

parameters are selected as= (1.6,1.6)ΩR diag , = = (0.26,0.26)(Nm/A)m bk k diag , 

-3 -3= (10 ,10 ) (H)L diag , -4 -4 2= (2 10 ,2 10 )( . )× ×mJ diag kg m , -3 -3= (10 ,10 )(Nm.sec/rad)mB diag ,  

= (500,500)(Nm/rad)K diag , and = (0.02,0.02)r diag . Let the desired trajectory be a circular path 

specified by 0.15m radius centered at (0.35m, 0.35m), in the TS. The forward kinematic equation is 
given by 

1 1 2 1 2

1 1 2 1 2

( ) ( )

( ) ( )

+ +
=  + +

l cos q l cos q q
X

l sin q l sin q q
 (53) 

The manipulator Jacobian matrix ( )J q  mapping from TS to JS is given by 

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

− − + − + 
=  + + + 

l sin q l sin q q l sin q q
J q

l cos q l cos q q l cos q q
 (54) 

The link's length is estimated by a gain of 0.9 from real values and initial tracking errors are 
considered zero in all simulations. Now, due to clarify the significance of the proposed controller 
two-simulation set will be investigated.  
Simulation 1: The JS controller given by (23)-(25) are simulated to track a circle in TS, with %10 
uncertainty in motor and link parameters, without any knowledge of manipulator dynamic. We set 

the controller parameters as 1 50=c , 70=dK , 1400=pK , 0.8=γ , 2000=IK  and 0.2=ε . In 

order to stability analysis of transfer function (33), we use the characteristic equation of (33) in the 
form 
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1.870 1400 2000 0+ + =s s  (55) 

Mapping the poles from qs -plane into the w-plane yields: 

9 570 1400 2000 0+ + =w w  (56) 

Where 1/= mw s , and 5=m  represents the sheets number of the Riemann surface. Solving the 
polynomial (56) we get the following roots and their absolute phase: 

1,2 1,2

3,4 3,4

5,6 5,6

7,8 7,8

1.4768 1.4961i            ,    arg( ) =0.7919

1.5125 1.496i           ,    arg( )2.3617

0.8842 0.6303i           ,    arg( )0.6193

0.3181 1.0202i         ,    arg( ) 1.

= ±

= − ± =

= ± =

= − ± =

w w

w w

w w

w w

9 9

873

1.0608                          ,    arg( )3.1416= − =w w

 (57) 

It can be easily shown that, only the complex conjugate roots 5,6w , are exist in the first Riemann 

sheet, expressed by arg( ) /<w mπ , which satisfy the stability condition given as 

arg( ) /2 0.3142> =w mπ . It means that, system (55) is stable. By this definition, the tracking 

performance using the above proposed scheme is plotted in Figure 2. Figures 3 and 4 are shown the 
norm of tracking errors in both TS and JS respectively. From the plots, we see that in the steady 
state, the norm of TS tracking error has a maximum value of about 7cm, while the norm of JS 
tracking errors are less than 7×10-3 rad which is negligible. Thus, despite of good tracking 
performance of the robust JS control strategies in JS, shown by Figure 5, they cannot provide 
satisfactory performance in TS under imperfect transformation of control space. The control signals 
at both joints are plotted in Figure 6. As a result, the performance of the JS control strategies is 
degraded by the imperfect transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2. Tracking performance in TS 
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Figure3. Norm of tracking error in TS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4. Norm of tracking error in JS 
 

Simulation 2: The TS control given by (23)-(25) and (50) are simulated. The control parameters set 

as 1 10=c , 90=dK , 1000=pK , 2000=IK , 0.6=γ  and 0.2=ε . Figure 7 shows the end-effector 

position of robot manipulator in the x-y-directions under uncertainties similar to simulation 1. As 
can be seen from Figure 8, end-effector position converges nicely to the desired value in TS. The 
profile of actuator voltage is shown in Figure 9. Simulation results indicate that the robot’s end-
effector successfully follows circle trajectory, while achieving robust performance of closed loop 
system. 
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Figure5. Tracking performance in JS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure6. The control efforts for both joints 
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Figure7. Tracking performance in TS  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
Figure8. Norm of tracking error in TS 
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Figure9. The control efforts for both joints  

  

8. Conclusion 
Many robust control techniques have been designed to control of robot manipulator in JS. However, 
control performance is degraded under imperfect transformation of control space from TS to JS. In 
this paper a robust fractional-order control has been proposed for flexible joint electrically driven 
robots. The proposed approach is free from robot manipulator dynamic and robust against all 
uncertainties in manipulator dynamics and its motors. It is shown that the robotic system has the 
Bounded Input-Bounded Output (BIBO) stability in the sense that all the signals are bounded. 
Numerical results for a two-link flexible joint robot driven by permanent magnet dc motors have 
shown the superiority of TS controller to the JS controller. The tracking performance is satisfactory 
such that the flexibility of the robotic system has been well under control. The control efforts are 
continuous and soft to be easily implemented. The voltages of motors are permitted under the 
maximum values. 
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