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Abstract

This paper presents a robust fractional order odiatrfor flexible-joint electrically driven robots
under imperfect transformation of control spacee Pnoposed approach is free from manipulator
dynamics, thus free from problems associated wetlgque control strategy in the design and
implementation. As a result, the proposed contraflesimple, fast response and superior to the
torque control approaches. It can guarantee robsstof control system to both structured and
unstructured uncertainties associated with robatadycs. The control method is verified by
stability analysis. Simulation results on a twdkliractuated flexible-joint robot show the
effectiveness of the proposed control approach.
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1. Introduction

Although torque controllers are frequently useddontrolling robotic manipulators [1-6], the role
of actuator dynamics considered by voltage contrabome cases cannot be neglected. Indeed,
torque controllers have some limitations comingrfnaractical point of view as follows:

-A torgue control law cannot be given directly be ttorque inputs of an electrical manipulator [7].
Because, physical control variables are electrsighals to the actuators not the torque vector
applied to the robot joints.

-The dynamics of motors and drives are excludeth@ntorque control strategies, [8], while the
actuator dynamics are often a source of uncertado®y to e.g. calibration errors, or parameter
variation from overheating and changes in enviramnbemperature.

-The control problem becomes hypersensitive whaoking the fast trajectories is demanded.
Therefore, control performance degrades quicklypeed increases.

-Some torque control approaches try to cancel dmdimearities by using feedbacks from the joint
torques. However, they face some challenging prosIg©].

Three customary approaches in this category:

(I) Using reaction force in the shaft bearings

(1) Prony brake method

(111) Using strain gages in rotating body
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Suffer from several inherent weaknesses. Theriethod is involved bearing friction and windage
torques, which are not avoidable. The second approequires some additional devices, which are
not convenient. Finally, the third method is expeasvith difficulty of installation.

It must be emphasized that, torque-based contsolflermed by fractional order differential
equations, are not distinguished of these problattisough, they can provide wider options in the
control design compared with the integer-order lers [10-12]. To overcome these weaknesses,
voltage control strategy was proposed [13]. Thiatsgy is free from manipulator dynamics in a
decentralized structure. All nonlinearities assdavith robot dynamics are canceled by feedback
linearization through feedbacks from motor curremisliowing this strategy, robust control of
flexible-joint robots was then developed [14-15bwéver, fractional order form of them remains
as an open problem. The considerable point, comimail aforementioned control strategies is
performing the control laws in the joint space (J&)ile the goal of many usual robotic tasks is to
drive the tool center point of the arm to follovdesired path in the task space (TS). Thus, despite
of well behavior of JS control strategies, none tbém can provide satisfactory tracking
performances in TS under the imperfect transforomadf control space. Some of these reasons are
as follow:

-The robot’'s kinematics and dynamics change whanaaipulator picks up different tools of
unknown length or unknown gripping points [16]. Téfere, the desired joint angles, their
velocities, and accelerations are not producedigelgcin JS under the imperfect transformation
from TS to JS.

-Tracking errors appear in TS while actuators dggena JS. Thus, transforming of control space
should be carried out to perform a control law [1&§ a result, the control inputs involve errors if
we use the imperfect transformation.

-The produced TS tracking errors are not detectabtecompensable appropriately due to lack of
feedbacks from the end-effector.

To deal with this problem, TS controllers were théeveloped using assumption of perfect
transformation of control spaces [18-23]; howeveere are still problems arises from TS dynamic
formulation of robot manipulators, that involvesosig couplings between the joint motions, the
time derivative of jacobian matrix, as well asiitgerse transformation.

Due to aforementioned problems, raised from totopsed TS control strategies, a robust
fractional-order controller is proposed that isefrlom manipulator dynamics. The proposed
approach includes two interior loops. The inneplaontrols the motor position using sliding mode
control (SMC) technique, while the outer loop gees a desired motor position for the inner loop
by a simple fractional PIDcontroller. The contributions of this paper aref@®ws. In section 2
we recall some basic relationships for describiragtional order calculus. Nonlinear dynamic
description is studied in Section 3. The overafitodl structure of the robust JS control design wil
be outlined in Section 4 and the closed-loop sysséability is then presented in Section 5. An
extension of the proposed JS control strategyasemnted in Section 6. In Section 7 the validity of
the proposed method is verified by computer sinmuat=inally, we give our conclusion remarks in
Section 8.
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2. Fractional calculus
In this section, some basic definitions relatettactional calculus are presented. Fractional
calculus is a generalization of integration andedéntiation to fractional order fundamental

operator, D, defined as [24]

4

@ 0
1

Dty = ’y: O (1)

Jan” y<o

Whereaandt are the bounds of the operation guid(]. There are three definitions of fractional

integration and differentiation. The most oftendisee the Grunwald-Letnikov (GL) definition, the
Reimann-Liouville (RL) and the Caputo definitiorb]2The GL definition is as:

. gL iy .
- YN (1) —
F©)= fim h3 (1) (j jf (t - jh) @
nh=t-a J
Wheref (t)is an arbitrary differentiable function. In additiche RL definition is formulated as
1 d"} f
D )= Y LR ©
Fn-y)dt": t-7)”

For (n-1<y<n), with '(n) denoting the famous Gamma function, which is defiag
r(n)=[t"%e"dr @)
a

Moreover, the Caputo’s definition can be written as

1 ¢ f()
F(y-n)y -7

For (n-1<y<n). Due to lack of space, further information abowrious approaches to

D )= (5)

fractional-order differentiation and integratiomdae found in the available literatures on thisdop
[25-27]. Nonlinear dynamic description is studiadhe next section.

3. Dynamics of flexiblejoint electrically driven robot
The equations of motion for n-link flexible-joinblvotic manipulator actuated by geared permanent
magnet DC motors can be described as [28]

D(@)G§+C(Q.a)d+9@)=K(r6-q) (6)
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J,.0+B, 0+1K(rd-q) =k, (7)

LI +RI +k,8+g¢t) =u (8)

Where qO00O" and 00" represent the link angles and motor shaft anglespectively,

D (q) OO™"is the symmetric positive definite manipulator inertia matiXg,q)d 00" is a vector
function containing Coriolis and centrifugal forces(q) J0"is a vector function containing of
gravitational forcesK OO""is a diagonal positive definite matrix representing the joiffnsss,

r is an nxn transmission matrixJ,, 00" "is a diagonal matrix of the lumped actuator rotor
inertias,B,, 00" " is diagonal matrix of the lumped actuator damping coefficidqi,] 0™ is an
invertable constant diagonal matrix characterizing the motor torquetactsisl 000" is the
armature current vectok, 10" " is a constant diagonal matrix of electrical inductarRé&] 1" " is

diagonal matrix of armature resistancks,J0""is a diagonal constant matrix for the back-emf

effects,u 00" is the control input voltage applied for the joint actuators,gdepresents an
external disturbance.
For the convenience of representations, introduce the state vaxigblgs x, =G, X, =8, x, =8

and x; =1 . Thus, the motion equations (6)-(8) can be rewritten in the follpvstate-space
representation
x=f (x)+Bu -Bg(t) 9
Where
_ X, -
D H(%y) (-C (X1, X)X , =g (X ) +K (rX ;=X p)
f(x)= X, :
I (=B X, 1K (X, =TXg) K, X5) (10)
I L7 (Rx5 +k,x,) |
B=[0 0 0 0 L*]

4. Robust joint space control design
In this section, we are interested in deriving a decentralized ttatrsuch that in the closed-loop

system, the link angles track the desired trajectory with an atdeptrror. For this purpose, we
design a controller that includes two interior loops. The inm@p tontrols the motor position using
SMC technique, while the outer loop generates a desired motoiopagjfor the inner loop by a

simple fractional PIbcontroller.
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4.1 Inner loop control design
Suppose that, the electrical subsystem of the tts@ynamic can be rewritten as follows
Rl +k,8+n(t)=u (11)
Where(T)denotes nominal value @, and
NE) =L+ R-R)I +(k, —Ky)8+at) (12)

It is the disturbance. Let us define a switchindee S, as

S, =ef(t) +clj|.e(r)d r , t=0 (13)

0
With e(t) =6, — 8, andc, being a positive constant. This choice of slidingace is preferred since

it is linear and it will result in a relative degr®@ne dynamic. Now, it must be founded a control
input u such that, the motor state trajectory convergeheoswitching surface. Toward this end,
differentiatingS, with respect to time yields

S, =6, —K;u+k, Rl +k; p(t) +celt) (14)
Thus, the inner loop controller can be designed as

u=RI +k,8, +kyce(t)+psgn(S,) (15)
Where p is a positive real constant which is determinedetiasn bounding function on the

uncertainties.
Proof: First define a non-negative function as

V = %53 >0 (16)
Differentiating (16) respect to time, and using)(éad (15) we obtain
V =8,S, =Seky (7(t) - psign (S, )) <[Se|ks * (I7)| - £) (17)
Now, the sufficient condition to establigh< 0 is
n®)|<p (18)

Thus, with the controller (15), the sliding surfdmomes attractive. It must be emphasized that, by
choosing the control law in the form (15), chatigrphenomena will occurs as soon as the state-
trajectory hits the sliding surface, because ofaninuity in signum function. To reduce this effec
the following saturation function has been knowibéouseful in many applications

_ sign() [[=1
sat (O { @ |ix1 (19)

Hence, the input voltage defined in (15) is modified as
u=RI +Kk, 8, +K,ce(t)+ psat (S—;j (20)

Wheree¢ >0 denotes a small design constant, called the baoynayger of the sliding surface. This
completes stability proof for inner loop controlstn.
73



Robust Fractional Order Control of Under-actuatstEomechanical System,.........ccccee i iiinnnny pp.69-86

Remark 1: Compared with traditional torque-basedCSdiésign, the proposed voltage-based SMC
strategy doesn’t require to any prior-knowledgewlmanipulator dynamic and bounding functions
on the robot parameters and uncertainties. In féet, motor's current includes the effects of
nonlinearities and coupling in the robot manipulato

4.2 Outer loop control design
Here, the control objective is to design a destrapectory g, for the inner loop controller, so that

6 - g, which further implies convergence of to the desired trajectory,. Based on this
observation, the outer loop is formed for trackiing joint position by suggesting

t
6{1=KdDyE(t)+KpE(t)+K|IE(J)da . 0 (21)
0

WhereK, , ¥, K, andK, are the design parameters and

E(t)=0y -0 (22)
Represent link position tracking error. Now, thdtage of every motor should be limited to protect
the motor against over voltages. Therefore, bygiaimoltage limiter, we obtain

u(t)=v , fol|<SVia (23)
u(t) =vesign(v) , folv|>v (24)
Wherev . a positive constant is called as the maximum peégthivoltage of motor and is

expressed as

v =Rl + kAbéd + IZbcle(t) + posa (S—:j (25)

5. Stability analysis

Due to decentralized structure of the proposedrothet, stability analysis is presented separately
for every individual joint to verify stability ohie robotic system. To this end, some assumptians ar
assumed to be valid throughout this paper:

Assumption 1: The control law given by (23)-(25)piies that the motor voltage is limited, that is

U]V max (26)
Assumption 2: The JS desired trajectqgy, the TS desired trajectody, and their derivatives up to

a necessary order are available and all uniforralynided.
Assumption 3: The external disturbang) is bounded as

|P0)] < B 27)
Whereg, ., iS a positive constant.

Since, the control laws given by (23)-(25), operatetwo areas, i.e.j|<v and V|>v .,

therefore stability analysis, and tracking perfoneceshould be evaluated in both areas.
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5.1 Area of v|<v

In this area, we have

ut) =Rl +K, 6, +K,ce(t)+ psat (%} (28)

max

Substituting the above equation into (11), rearraggvith some mathematical simplification yields
the error dynamic equation as

&(t) +celt) =K;* [n(t) - psat [%D (29)

The variablesé, |, and | are bounded, sincais bounded [15]. These results, in addition to
Assumption 3, obtains the function bounding the Rifi8quation (29) as

n(t)—psam(s—;j

is a positive scalar function, representing thpembound of(¢), and {,and{,are

-1
Ky

< lzb_l(l-l'max-'-(ll max+(§max+¢)max+ ,0) :w (30)

Where ()

max

positive constants and the upper boundPf RA’) and (k, —kAb) , respectively. Thus, according to

(29), e(t) andé(t) are bounded, which also means boundededneds, afhereasd andé(t) are
bounded. By using (21), it is also verify that

K D™E®) +K E®)+K Et) =6 (31)
Which is a fractional order linear system with limited inpﬁyt It can be easily show that, the

output of E(t)is bounded under limited ianQ,, if the fractional order linear system (31) be
strictly stable. To this end we utilizes the following lemingen [29]
Lemma: The system is BIBO stable, if

aimn

larg(@ ) > 5 (32)

Wherew=s,a00%,0<a <2, andyis the I" root of denominator of transfer function
Es)/8,(s).
Proof: For stability analysis, generally, we derithee transfer function and then we study the
location of the roots of the denominator. The tfanfunction is stable if the roots are in LHP [29]
Hence, the transfer function is in the form:

Ge=2&=-_ 1

6,(s) Kgys V+Kps+K,
According to [29], every fractional order systenmdze expressed in commensurate form, in which
the domain of th&s (s) definition is a Riemann surface with Riemann sheets, i.e.
1

dez‘}l/ﬂ +K psz‘}zlﬂ +K,

(33)

G(s) = (34)

Whered,, &, and§ are integers, ané? is the least common multiple @# ) and 1. Therefore,
using the procedure explained in [29, 30] we camosing the control parametefs K, , K, and
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K, such that, the closed loop poles to be in degitades, that means boundednesd=af From
(22) and according to assumption 2, boundednegsazn be achieved. Also, from (7), we have

J,0+B, _6+r’K6=k,| +rKq (35)
Which represent a stable 2nd order LTI system drlwethe bounded inpW,,| +rKq. Thusé, 6
and @ are bounded. From boundednes®aénde(t), it can be founded thad, is bounded. Thus,
with the same manipulation similar to (33) and (3dundedness &f(t)can be achieved that
means boundednessiafwhereas the desired trajectajy is bounded. Now, since all staed,q

,d and| associated with each joint are bounded, then v®@&0 8, q, ¢ andl are bounded. As
a result, the robotic system has the Bounded IBputaded Output (BIBO) stability.

5.2 Area of|[v | >v .
In this area, we have
LI +RI +k,0+@t) =V ,,,8ign¢ ) (36)

To consider the convergence of tracking ereftr) in this area, a positive definite function is
proposed as

Vv :%kbez(t) >0 (37)
The differentiation oV is

V' =k,e(t)e() (38)
Frome(t) =4, — @ and using (36), we have

V =e(t)(kyb +LI +RI +4t) ~V,,signt )) (39)
Assume that, there exists a positive scalar denoted hiyat

LI +RI +K 8, +git) <0 (40)
Thus, to establish the convergendes 0, it is sufficient that

V,3Sign{ )=osigné | (41)
Proof: Substituting (41) into (39) yields

V =e(t)(k,6, +LI' +RI +gt) - osigne)) (42)

Now, forV to be a negative definite function, the requirenig(40)
V < |e(t)|\kb6rd +LI +RI + ga(t)\ —oe(t)sign(e ¢ ))

:|e(t)”L|'+RI +€0(t)+kb9d\-0|e(t)| (43)
=le)| (L1 +RI +@0) +k, 8| -0)
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Thus, the motor tracking error is converged uiltd tontrol system comes into the area governed
by control law (23). As a result, even if the rabatystem starts from the areafo|f>vmax, it goes

into the area of/| <V .. that all states are bounded. Equation (41) meeais
max— 9 (44)

Therefore, the maximum voltage of motor shoulds$ati44) for the convergence of motor position
tracking errore(t). From the closed loop system (36), we can obtain

LI +RI :VmaXSignQ/ ) kb0_¢¢ ) (45)
The RHS of (45) is bounded as
M maSIONWV)~ Ky = 08 ) SV i+ Ko ot P (46)

Thus, from (45), it is guaranteed that outpuis bounded. From boundednesslafone can imply
that, the linear stable system (35) is bounded uhdended inputk | +rKq which result in

boundedness of variabled, &, and 8. With the same procedure as (33) and (34), bouretedof
E and soq can be derived. Since all statés &, q, g and | associated with each joint are

bounded then vectord, 8, q, g and| are bounded. Thus, the robotic system has the Balind
Input-Bounded Output (BIBO) stability.

6. Robust task space control design
As mentioned before, despite of well behavior ofcad8trol strategies, none of them can provide

satisfactory tracking performances in TS underitiygerfect transformation from Cartesian to joint
angles. For this reason, here, we will improvedbter-loop of the aforementioned JS controller to

track a desired trajectory in TS. Let ¥s[00"to be a TS vector, representing the position and
orientation of the robot end-effecor relative tdideed user defined reference frame. Then, the
forward kinematic and differential kinematic tramshation between the robot links coordinates
and the end-effector coordinates can be written as

X =h(a) (47)
X =3(@)q (48)

Where h(q):0" - 0" is the differentiable forward kinematics of the rnpatator, and

J(q)JO™" denotes the Jacobian matrix definedldg) =ah(q)/0q O 0™". Let us define the TS
tracking error as

E, =X~ X (49)

Where, X , is the desired TS position vector. Now, we propgbgeouter-loop controller in the form

t
6, :IJ‘l(q)(KdD“VEX (D) +KE, (D +K, Ex(r))dr 120 (50)
0
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A block diagram of the proposed control approackapicted in Figure 1. By stability analysis,
similar to previous section, we show the closeglsystem stability. Toward this end, tracking
performance is evaluated in both areas.

6.1 Areaof v|<v,,,
As was done in previous section, one can showttieaRHS of (29)e(t) and soé(t) are bounded.

Thus, boundedness @, can be achieved. Differentiating both sides of) (B@th respect to time
gives

gdl—‘___lf______l ;
E, |Fractional PID— M Sidngtode| V| || Y] Actuated

{
Controfler B Flexible-Joint > 1
+ :E 2 50 Controler | | ] | |

Robot g

Figurel. Schematic diagram of the proposed cosyrstiem
1 . _ A .
K D™E, +K E, +K E, =J§, (51)

Which is a fractional order linear system with lied inputjé , whereas] , and g, are bounded.
By the same analysis similar to section 5.1, wedfatain boundedness &, , and soX , which in

turn means boundednessgéccording to (47). As a conclusion of this analysis robotic system
has the BIBO stability in this area, since all yétem states are bounded.

6.2 Area of V| >V,

It can be easily show that, by choosing a positieéinite function, as (37), starting from an
arbitrary initial e(0) under the condition (44), concludes reducing thee/af |e(t)|. Thus, motor

voltage will move to the area d¥|<v,, which all signals are bounded. As a result of this
discussion, boundedness &f 8, 8, and | can be achieved as same as before. Rewrite Equation
(51) as a fractional commensurate form as (34) Vintited inputj(q)éfj. Thus,E, , andE, are
bounded. FronE, =X, -X , E, =X, -X , and using Assumption 2, it follows thXt, and X

are bounded. This completes the proof of the cldsep system stability. As a conclusion of this
analysis, the robotic system has the BIBO stability
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7. Computer simulation

The robust performance of the proposed controtegggawas verified through simulations of a two-
link electrically driven robot manipulator with Hible joints, uncertainties in the motor dynamics
and without requiring the information of manipulatdynamic. The parameters for the motion
equations in the form (6) with link masseg, m,, lengthsl,, 1,, link angular positions),, q,,

and link's moment of inertiq,, | ,are
d, d . |—2myl ) _sin@,)(dg,+ 0.5
D(Q){dn d”} ,C(q,q)Q{ 2ie .2( i )
21 “22 m,l il Sin(a,)d;

g (q) _ (mllcl+m2| 1) gcos(q,) +mj, geos(q,+q )
m,l.,gcos(d; +4q,)

dy, = mz(l r+1+2 | gos(g 2))+ml021+| il

- - 2
dyy =d,=m,l 5 +myl . gos(q,) +1 ,

(52)

— 2
C|22 - m2|02+| 2
Where |, represent the distance between the center of wiaisk and the T joint. For the

convenience of simulation, the nominal parametees given asl, =I,=1Im, |, =1,,=0.9m,
m, =15g andm, =6kg , |, =5 kg.m?and | , =2 kg.m?; Also, the exact-actuator dynamic model
parameters are selected Rasdliag (1.6,1.6Q, K, =k, =diag (0.26,0.26)(Nm/A,
L=diag (10%,10°) (H, J,=diag(2x10*, 10)(kg.m?), B, =diag(10°,10° )(Nm.sec/raqd
K =diag (500,500)(Nm/ray), and r =diag (0.02,0.02. Let the desired trajectory be a circular path

specified by 0.15m radius centered at (0.35m, 0.35m), in th&ReSforward kinematic equation is
given by

I I
X :{ 1005(d) +1 £05(d; +0) 53)
l,sin(q,) +1 sin(@,+q,)
The manipulator Jacobian matrd{q) mapping from TS to JS is given by
-1,sin(q,) -1.sin(q,+q,) -l sin(g,*+q
J (q) :|: 1 1 Zg 1 2) g 1 9 (54)
| cos(q,) +1 £os(q,+q,) 1 £0s(a,+q)

The link's length is estimated by a gain of 0.9 from real valudsimtial tracking errors are
considered zero in all simulations. Now, due to clarify theiogimce of the proposed controller
two-simulation set will be investigated.

Simulation 1: The JS controller given by (23)-(25) are simulatadcatk a circle in TS, with %10
uncertainty in motor and link parameters, without any knowledgearfipulator dynamic. We set
the controller parameters as=50, K; =70, K, =1400, y=0.8, K, =2000 and £ =0.2. In

order to stability analysis of transfer function (33), we usectfagacteristic equation of (33) in the
form
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70s"®+ 1408 + 200G | (55)
Mapping the poles frons®-plane into the w-plane yields:
70v ° +140Q/ ° + 200G (56)

Wherew =s”™, and m =5 represents the sheets number of the Riemann surSualving the
polynomial (56) we get the following roots and thedbsolute phase:

w,, =1.4768t 1.4961i .| ang(, | ) =010
W, , =-1.5125¢ 1.496i | aveg, [92.3617
Wy, =0.8842t 0.6303i | avg(, |0.619z (57)
W, =-0.318% 1.0202i | aveg, |5 w3
W, =-1.0608 | amg(|=B.1416

It can be easily shown that, only the complex cgafe rootsw ¢z, are exist in the first Riemann
sheet, expressed by{arg(/v j <m/m, which satisfy the stability condition given as

larg(v | > 77/2m=0.314Z. It means that, system (55) is stable. By thisnitédn, the tracking

performance using the above proposed scheme tegliot Figure 2. Figures 3 and 4 are shown the
norm of tracking errors in both TS and JS respebttiviFrom the plots, we see that in the steady
state, the norm of TS tracking error has a maxinuatne of about 7cm, while the norm of JS
tracking errors are less than 7%1@ad which is negligible. Thus, despite of goodckiag
performance of the robust JS control strategiedSn shown by Figure 5, they cannot provide
satisfactory performance in TS under imperfectdfamation of control space. The control signals
at both joints are plotted in Figure 6. As a resthle performance of the JS control strategies is
degraded by the imperfect transformation.

Desired trajectory

0.5+

0.45+

0.4+

0.35+

0.3-

0.25+

0.2+

I Il I I Il I I Il
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Figure2. Tracking performance in TS

80



Journal of Modern Processes in Manufacturing amwdiation Vol. 5, No. 1, Winter 2016

0.08
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0.07 -

0.065+

0.06 -

0.055 -

0.05+

Norm of Tracking error (m)

0.045 -

0.04+

Time(Sec)

Figure3. Norm of tracking error in TS

0.018

0.016 B

0.014 B

0.012 B

0.008 B

0.006 B

Norm of Tracking error (rad)

0.004 H g

0.002 | B

Time(Sec)

Figure4. Norm of tracking error in JS

Simulation 2: The TS control given by (23)-(25) gb@) are simulated. The control parameters set
asc, =10, K4 =90, K, =1000, K, =2000, y=0.6 and ¢ =0.2. Figure 7 shows the end-effector

position of robot manipulator in the x-y-directions under uncatitss similar to simulation 1. As

can be seen from Figure 8, end-effector position converges nicéte desired value in TS. The
profile of actuator voltage is shown in Figure 9. Simulatiesults indicate that the robot’s end-
effector successfully follows circle trajectory, while achieving rolpgstormance of closed loop

system.
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Figure9. The control efforts for both joints

8. Conclusion

Many robust control techniques have been desigmedritrol of robot manipulator in JS. However,
control performance is degraded under imperfecstaamation of control space from TS to JS. In
this paper a robust fractional-order control hasnbproposed for flexible joint electrically driven
robots. The proposed approach is free from robotipodator dynamic and robust against all
uncertainties in manipulator dynamics and its nstdiris shown that the robotic system has the
Bounded Input-Bounded Output (BIBO) stability inetsense that all the signals are bounded.
Numerical results for a two-link flexible joint robdriven by permanent magnet dc motors have
shown the superiority of TS controller to the J&toaller. The tracking performance is satisfactory
such that the flexibility of the robotic system Haesen well under control. The control efforts are
continuous and soft to be easily implemented. Tokages of motors are permitted under the
maximum values.
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