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Abstract 
Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots 
has been addressed in this paper. Two important practical situations have been considered: the fact 
that robot actuators have limited voltage, and the fact that current signals are contaminated with 
noise. Through of a novel voltage-based fractional order control for an integer-order dynamical 
system and based on a Lyapunov's functions analysis, it is shown that the overall closed-loop 
system is robust, BIBO stable and the joint position tracking error is uniformly bounded. The 
satisfactory performance in lower energy consumption of the proposed fractional control scheme is 
verified in comparison with a standard integer-order controller by experimental results. 
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1 Introduction 
Many advanced control theories have been devoted to  flexible joint robots using various control 
techniques such as nonlinear adaptive control [1], passivity-based control [2], adaptive back-
stepping control [3], global position-feedback tracking control [4], Singular perturbation approach 
[5-6], predictive control [7], adaptive fuzzy approaches [8-9], hierarchical sliding mode control 
[10], dynamic surface control [11], and higher-order differential feedback control [12]. Majority of 
them have not considered the actuator electrical subsystem in the control design procedure. In other 
words, their control laws calculate the desired torque that should be applied to the manipulator 
joints. 
Since most robotic systems use electrical motors as actuators, recently, some voltage-based 
controllers have been presented for electrically driven flexible joint robot (EDFJR) manipulators 
[13-14]. It proposed a robust control scheme in presence of uncertainties associated with both motor 
and robot dynamics. The controller design strategy is based on the actuators' electrical subsystems 
considering to voltage saturation nonlinearity. Hence, the knowledge of the actuator/manipulator 
dynamics model is not required as it is for many other control strategies. An extended form of this 
work has also been presented, [14], which assume availability of the motor signals. The advantage 
of these approaches is two-loop instead of three-loop control structure, which makes them superior 
to others. Nevertheless, their measurement requirements are substantial. As an extension in the field 
of EDFJR, [15] proposed a single-loop control scheme. This approach is superior since it is based 
on first-order dynamic model of EDFJR.  
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Studying the literature on the field of fractional calculus in recent years, confirms that equipping 
traditional control methods with fractional-order operators can enhance the closed-loop system 
performance by improving transient and steady-state response. Recently, a valuable finite-time 
robust controller has been developed by incorporating the adaptive back stepping concept into 
fractional order controller design [16]. The proposed control scheme is in the torque-level. Thus, it 
requires converting to the voltage-level for real-time implementation.  In addition to this, it does not 
consider the role of actuator saturation in controller design, and stability analysis. 
In this paper, we present a direct adaptive fuzzy fractional-order control for EDFJR by considering 
to saturation nonlinearity in the voltage-level. To the best of the author's knowledge, the proposed 
control scheme has not been investigated previously for EDFJR. The overall closed-loop system is 
proven to be BIBO stable and the joint position tracking errors are uniformly bounded based on the 
Lyapunov’s direct method. Compared with the same integer-order control law, the proposed 
approach has lower energy consumption. 
The rest of this paper is as follows. In section 2, some basic concepts about fractional calculus are 
presented. Section 3 introduces the model of an n-link flexible joint robot manipulator. Section 4 
presents direct adaptive fuzzy fractional-order controller design. The stability analysis is also 
discussed in this section. In section 5, some experimental results are provided and finally, some 
conclusions are given in Section 6. Throughout this paper, we present the vectors and matrices in 
bold form; ( )λ � and ( )λ � indicate the smallest and largest eigen values, respectively, of a positive 

definite bounded matrix; and finally � indicate the Euclidian norm of a vector/matrix. 

 
2. Preliminaries of Fractional Calculus 
Definition1. The Caputo fractional derivative of the order α is defined as [17] 
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Definition2. Fractional integration of the order α of 1([0, ])f L T∈ , i.e.
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For (0, ]t T∈ [18]. 

Definition 3. The Caputo derivative of order 0α > of function ([0, ])nf C T∈ , i.e. f having continuous 

first n derivatives, is defined as ( ) ( )n nD f t I D f tα α−= , where [ ]n α= [18]. 

Property 1: The Caputo derivative of a constant is zero. 
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Property 2: For the Caputo derivative, we have
0

( )lim ( ) ( )C n
t tn

D f t f tα

α →
= . 

Property 3: For the Caputo derivative, we have
0 0

( ( )) ( )C C
t t t tD D f t f tα α− = . 

The following Lemma plays also a key part to establish the subsequent control development and 
analysis. 
Lemma 1: Let ( )x t β∈ ℜ . The Caputo fractional derivative of a differentiable function in quadratic 

form is as follows [19] 

0 0 0

1
( ( ) ( )) ( ) ( ),            (0,1], 

2
C T T C
t t t tD x t Px t x t P D x t t tα α α≤ ∀ ∈ ∀ ≥   

Where P β β×∈ ℜ is a constant matrix. 
 
3. Robot Dynamics 
The dynamics of an electrically driven flexible-joint robot can be described by 

( ) ( , ) ( ) ( )m+ + = −D q q C q q q g q K rθ q&& & &  (4) 

( )m m m m a+ + − =Jθ Bθ rK rθ q K I&& &
 

(5) 

( )a a b m t+ + =RI LI K θ v&&
 

(6) 

where q is the n-vector of joint angles, ( )D q is the n n× inertia matrix, ( , )C q q q& & is the n-vector of 

centrifugal and Coriol is forces, ( )g q is the gravitational forces vector, mθ is the n-vector of motor 

angles, aI is the n-vector of armature current, and ( )tv is the n-vector control input voltage to the 

actuators.J , B , r , mK , L , R , bK , and K are n n× constant diagonal matrices of actuator 

inertias, damping, gear-box ratio, torque constant, electrical inductance, electrical resistance, back-
emf effects, and joint stiffness, respectively.  
 
3. Direct Adaptive Fuzzy Fractional-order Control Design 
Equations (4)-(6) represent a fifth-order highly nonlinear dynamic system that makes the control 
problem extremely difficult. To cope with this problem, a direct adaptive fuzzy fractional-order 
controller is developed based on the first order dynamic model of EDFJR by employing voltage as 

control input. The controller design procedure start by adding and subtracting
0

( )C
t tD z tα , to the left 

hand side of actuator electrical subsystem in decentralized form as 

0 0
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Where 
0

( ) ( )C
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mr qθ δ− =  (8) 

Where δ  represents the effect of joint flexibility. Combining equations (7), (8), and introducing 
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0

1 1 ( )C
a a b b t tRI LI K r K r q D z tαδ− −℘= + + + −&& &  (9) 

Called as residual uncertainty, this leads to 

0
( ) v( )C

t tD z t tα +℘=  (10) 

From practical point of view, the range of actuator input may limit by some upper and lower bound 
[20-21]. Suppose that the input limitation is described as 

v( )=sat( ( ))t u t  (11) 

Where v( )t is the actual actuator input,( )u t is the controller output, sat( ) :ℜ ℜ→� represents 

saturation function, sat sgn( ( )) ( ( ))min{ , ( ) }uu t u t u tξ= , and 0uξ > is the maximum admissible 

voltage of the motor. When controller output falls outside linear range of the actuator operation, 
actuator saturation occurs. The non-implemented control signal by the device, denoted asdzn( ( ), )uu t ξ

, is then given by [20-21] 

dzn( ( ), )= ( ) sat( ( ))uu t u t u tξ −  (12) 

Where dzn( ( ), )uu t ξ represents dead-zone func�on. Now, subs�tu�ng (11) into (10), and using (12), 

it follows that 

0
( ) ( ) dzn( ( ), )C

t t uD z t u t u tα ξ+℘= −  (13) 

Remark 1: Equation (11) indicates that the motor voltage is bounded, i.e, 

( ) uv t ξ≤  (14) 

As a result, the variablesaI , aI& , and mθ& are upper bounded [20]. 

The considerable point is that the uncertain term ℘cannot be evaluated directly, since the actual 

values of the motors' dynamic are unknown. In addition to these, there is problem arises from 
torque measurements as mentioned in [22]. Under these circumstances, using the Mamdani 
inference-engine, singleton-fuzzifier and center-average defuzzifier, a direct adaptive fuzzy 
fractional-order control is proposed in the form of 

T
1 2ˆ( ) ( , )u t x x= y ψ  (15) 

Where ˆ M∈ ℜy is the estimation of y used into a fuzzy system T 1 2( , )x xy ψ which approximates the 

following function based on the universal approximation theorem of fuzzy systems as 

0 0

T
1 2 1 1 2( , ) ( ) ( )C C

t t d t t p dx x D z t k D e t k x k xα αε+ = + + + +℘y ψ  (16) 

Where 1 2( , ) Mx x ∈ ℜψ  denotes fuzzy basis function vector fixed by the designer, the number M

represents the number of linguistic fuzzy rules, ε is reconstruction error of fuzzy logic system; 
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0
( ) ( )C

d t t dz t D q tα= with ( )dq t denoting the desired joint position;
 1k , pk  and dk are positive scalar gains 

selected as control design parameters,  

01 1( ) ( )C
t tx e t k D e tα−= +  (17) 

01 1( ) ( )C
t tx e t k D e tα−= +

 
(18) 

And 

( ) ( ) ( )de t q t q t= −  (19) 

Is the joint position tracking error. Now, applying Equations (15) and (16) to equation (13) provides 
the closed-loop system as 

0

T
2 2 1 1 2( , ) dzn(u( ), )C

t t d p uD x k x k x x x tα ε ξ+ + = + +y ψ%  (20) 

Where ˆ= −y y y%  represents the difference between actual and estimated value of weighting vectors. 

The state space equation in the tracking space is then obtained using (20) as 

0
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A. Stability analysis 
To proceed with subsequent stability analysis, the following lemma is required. First, the following 
two assumptions are enforced. 
Assumption 1: The desired joint trajectories and their fractional-order derivatives up to a necessary 
order are continuous and uniformly bounded  

Assumption 2: The reconstruction error ε is bounded, i.e. cεε < with knowncε . 

Now, we are ready to present the following lemma. 

Lemma2. ( )dzn( , )uu t ξ  satisfies the following bounding inequality: 

dzn( ( ), )
(1 )

u
uu t

κξξ
κ
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Where 
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ξκ  = − 
 

is a constant smaller than 1.  

Proof: Following the same procedure as [20], it can be easily shown that 

dzn( ( ), ) ( )uu t u tξ κ≤  (23) 
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According to Equations (15), (16), (18), and (20), the absolute of control signal ( )u t is bounded and 

given by 

0 0
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t t u t t uu t D z t u t D z t tα αξ ξ= +℘+ ≤ +℘ +  (24) 

This result together with Equation (23) yields 
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Now, according to equations (10), (11) and Remark 1, we have 
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And proof is completed ■ 
In order to find the adaptive law for the proposed fractional-order controller and proving the 
stability of the scheme, let us purpose the following positive definite function 

( , ) T TV = +X y X PX y Γy% % %  (26) 

Where M M×∈ ℜΓ is positive definite; and 2 2, ×∈ ℜP Q are the unique symmetric, positive definite 

matrices satisfying the matrix Lyapunov equation 

T + = −A P PA Q  (27) 

Taking the Caputo fractional derivative to expression (26) and applying Lemma 1, it follows that 
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Using expression (21) and (27) in (28), we have  
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If we choose the adaptive law as 

0

1ˆC T
t tDα −=y Γ ψB PX  (30) 

Therefore, (29) can be further written as 

0

2
( , ) ( ) 2 ( ) 2 ( ) dzn( ( ), )C

t t uD V u tα λ λ ε λ ξ≤ − + +X y Q X PB X PB X%  (31) 

Remark 2: Suppose a sufficient number of basis functions are used and the approximation error can 

be ignored. In the case where ( ) uu t ξ< , we havedzn ( )( , ) 0uu t ξ = . Hence, (31) can be reduced to 

0

2
( , ) ( )C

t tD Vα λ≤ −X y Q X%  (32) 
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From inequality (32) we can conclude, by fractional integration, that
 

T
tIα < ∞X QX , which implies 

that T
tIα < ∞X X , and thus, the RMS value of X  converges to zero (see Proposition 1 in [18] for 

details). 
Remark 3: Owing to the existence ofε  in (31), it is very easy to prove using Lemma 2 and 
Assumption 2, that the following inequality hold  
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As a result, 
0
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t tD Vα X y% is negative definite as long as X is outside the compact set ΩX defined as 
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Since ( , )V X y% is positive-definite, this result, together with Theorem 7 from [23], it follows that 

( , )X y% are bounded. According to definition of2x , the linear fractional-order differential equation 

0 1 2( ) ( )C
t tD e t k e t xα + = has the bounded input2x . It is BIBO stable based on Routh-Hurwitz criteria 

[24]. Thereby ( )e t , and 
0

( )C
t tD e tα are bounded. According to assumption 1, ( )dq t and 

0
( )C

t t dD q tα are 

bounded. Thus, the bounded variable( )e t and 
0

( )C
t tD e tα implies that ( )q t and 

0 0 0
( ) ( ) ( ) ,  (0,1]C C C

t t t t d t tD q t D q t D e tα α α α= − ∈ are bounded. From (5) we have 

2 +m m m m aJθ Bθ r Kθ rKq K I+ + =&& &  (35) 

Which is a second-order linear differential equation with the bounded input. So, according to 
Routh-Hurwitz stability criteria, the variablesmθ , mθ

& and mθ
&& are bounded. Extending this result to all 

motors implies the boundedness of system statesmθ  and mθ
& . Then, our main results can be 

formulated as the following theorem.  
Theorem 1: Let an integer-order system be described as in (4)-(6). By using the Mamdani inference-
engine, singleton-fuzzifier and center-average defuzzifier and choosing the robust adaptive fuzzy 
fractional-order control (15) in the voltage-level and the update laws as equation (30), the tracking 
error, and the weighting vector are guaranteed to be uniformly bounded. This result together with 
Remark 1 implies that all states associated with each joint are bounded. As a result, the robotic 
system is robust and BIBO stable. 
 
4. Experimental Results 
For practical implementation of the proposed controller and comparison purpose, a single-link 
flexible joint electrically driven robot has been considered. A high flexible element made from 
polyurethane is utilized for power transmission. A geared permanent magnet DC motor made by 
Barber-Colman Company is the actuator of this system and rotates the flexible element. A pulse-
width modulation (PWM) driver is used for exciting the motor. Its permitted input voltage range is 
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[-12V, +12V]. The other end of the flexible element is connected to a steel arm. To provide the 
controller with the feedbacks from the motor and joint angular positions, two potentiometers are 
installed. For Integer-order adaptive fuzzy controller, joint velocity is calculated from joint position 
measurements by using a discrete filter. The filter is completely described in [25]. We have set the 
filter parameters p1 and p2 to 4. Also, the sampling period of the data acquisition process is set to 10 
msec. The measurement data are obtained by the data acquisition (DAQ) Advantech PCLD-8115D 
which has analog input ports. Using this DAQ, we can implement the controller programmed in 
MATLAB/SIMULINK practically through Real-Time Windows target libraries. A block diagram 
of the experimental setup is illustrated in Figure 1. 

 
 
 
 
 
 
 
 
 

Figure1. Block diagram of the system 

 
To explore the controller ability, performance of the proposed control method is compared with its 
integer-order form. Both control algorithms are based on the voltage control strategy. The desired 
trajectory ( )dq t used in all experiments is given by 

2
( ) 1.26 0.63sin( )

5dq t t
π= −  (36) 

The control parameters for both fractional and integer-order form are the same, except that0.5α =
and (9)0.5I=Γ , where ( )I

�
denotes the identity matrix. Three membership functions are given to the 

fuzzy variables1x and 2x in the operating range of the system, as shown by Figure 2. Thus, the whole 

space is covered by 9 fuzzy rules. The Mamdani-type linguistic fuzzy rules have also been 
completely explained in [15].  
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Figure2. Membership functions for the inputs 1x  

 
Under these settings, experimental results are presented in Figures 3 to 5. The desired and actual 
joint angular positions are shown in Figure 3. Joint position tracking errors are illustrated in Figure 
4. The applied voltages are also presented in Figure5. As can be seen, both controllers 
approximately have the same result in tracking of desired trajectory; except that fractional-order 
controller has lower energy consumption.  

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3. Output tracking performance 
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Figure4. Joint position tracking error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure5. Control signal 

 
5. Conclusion 
This paper presents a direct adaptive fuzzy fractional-order control scheme for electrically driven 
flexible joint robots considering uncertainties in both actuator and manipulator dynamics. The 
controller design is not dependent on the mechanical dynamics of the actuators and manipulators, 
thus is free from problems associated with torque control strategy in the design and implementation. 
Based on Lyapunov stability concept, it is shown that the proposed controller can guarantee 
stability of closed-loop system and satisfactory tracking performances. Experimental results show 
that tracking performance is satisfactory such that the effects of joint flexibility are well under 
control. The voltages of motors are permitted under the maximum values. 
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