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Abstract

This paper addresses the problem of the fractishding mode control (FSMC) for a MEMS
optical switch. The proposed scheme utilizes atifsaal sliding surface to describe dynamic
behavior of the system in the sliding mode stadggerf comparison with the classical integer-order
counterpart, it is seen that the control systenh whte proposed sliding surface displays better
transient performance. The claims are justifiedulgh a set of simulations and the results obtained
are found promising. Overall, the contribution bistpaper is to demonstrate that the response of
the system under control is significantly better tioe fractional-order differentiation exploited in
the sliding surface design stage than that for dlassical integer-order one, under the same
conditions.
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1. Introduction

Micro-Electro-Mechanical-Systems are emerging systewith ever-increasing applications in
modern industries. MEMS technology can be utilitegroduce complex structures, devices and
systems in the micrometer scale [1-2]. They havabled many types of sensors, actuators and
systems to be reduced in size by several ordarsaghitude, while at the same time improved their
performances [3]. One of the fields that undergpid-aniniaturization is that of optical signal
transmission [4]. Bandwidth is limited by large-canatrix switches, requiring signal conversion
from optical, to electronic, and reverse. One soiuto this problem is utilizing MEMS optical
switches to perform switching operations. MEMS ogiti switches manipulate optical signals
directly, without first converting them to electiorsignals with lower size and power consumption
[5]. This is important whereas telecommunicatiodustry desire to focus on all-optical networks,
meaning total exclusion of signal conversion inagtsignal transmission.

The considerable point is that, although, the adeann micromachining technology make it
possible for large-scale matrix switches to be nitmoally integrated on a single chip [6], there
are yet several problems.

MEMS models suffer from nonlinearities and uncettias like many other dynamical systems.
Unlike macro mechanical systems where the dynanodeting is relatively simple, it is quite
problematic in the MEMS case. Damping rate is theameter, which is difficult to determine
analytically, even through finite element analygi$. The presence of high-frequency system
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dynamics is also introduced as additional challdogéhe MEMS dynamic modeling that increases
the systems' complexity and so invokes appropoatérollers to cope with this issue.

A lot of researchers have focused on some possiilgions to overcome the aforementioned
weaknesses [4, 8-18]. Considering the earlier watlshows that, almost, sliding mode control has
been received more and more attention, recentlging§l mode control design is believed to be
robust with respect to system uncertainties in Ilogoretical research and application. It combines
the intuitive nature of feedback linearization g¢ohtvith the robustness of sliding mode techniques
in the controller design phase. This type of cdntiesign has several interesting and important
properties that cannot be easily obtained by adpproaches. When a system is in the sliding mode,
it emulates a prescribed reduced-order system anthsensitive to parameter variations and
disturbance. Precise dynamic models are not redjuared the control algorithms are easy to
implement. All these properties make the slidingdemacontrol an ideal candidate for MEMS
control.

As a result, in the related literature, the abseotenethods designed and implemented via
fractional differentiation in robust and nonlineantrol is visible.

The purpose of this paper is to fill this gap te #xtent that covers the following: 1) better trant
performance than those utilizing traditional integaeder operators; 2) employing additional design
options; 3) conditions for hitting in finite timend 4) sliding mode control based on fractional orde
differentiation. This paper addresses the issUgM€ of a MEMS optical switch in the presence of
parametric uncertainty. Toward this end, a slidsogface is used to describe dynamic behavior of
the system in the sliding mode stage. A controksahis then derived to govern the motion of the
under control system such that it converges tadbal manifold. Based on this control scheme, a
fractional form of sliding mode control strategypgsoposed for the case of uncertain parameters.
The stability of the system is demonstrated usiggpunov theory.

This paper is organized as follows. In section 8,recall some basic relationships for describing
fractional order calculus. Section 3 describes digeamic equation and the property of MEMS
dynamic parameters. The plant parameters are adstanee uncertain, but with known upper and
lower bound, in this section. In section 4, thelitranal SMC problem is proposed and the control
input is designed. The fractional sliding mode colnscheme derivation and stability analysis are
then presented. Section 5 shows the robust perfaenaf both SMC/FSMC from the simulation
results, which is followed by conclusion in sect&n

2 Fractional Calculus

In this section, some basic definitions relatedfraxtional calculus are presented. In fractional
calculus, the traditional definitions of the intagand derivative of a function are generalizeanfro
integer orders to real orders. In the time domidue,fractional order derivative and fractional arde
integral operators are defined by a convolutiornraipen.

Several definitions exist regarding the fractiotativative of ordear =0, but the Caputo definition
in (1) is used the most in engineering applicatiosince this definition incorporates initial
conditions forf (t) and its integer order derivatives, i.e., initi@nditions that are physically

appealing in the traditional way.
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Definition 1 (Caputo fractional derivative [19]). The Caputadiional derivative of ordea 00"
on the half axig€1” is defined as

f)=— ] 10 4

“Th-a) g TR W

a

With n=min{k OO/ k >a} ,a >0, and I'(n) denoting the famous Gamma function, which is
defined as

r(n)= [t"%eTdz @

For the Caputo derivative, we have

Do=0, (cis a constant) 3)

Nonlinear dynamic description is studied in thetrsection.

3. Dynamic Modeling

The scanning electron microscope (SEM) microgrdpthe MEMS optical switch composed of an
electrostatic comb drive actuator, a suspensiombeaad reflection micromirror with optical fiber
grooves is shown in Figure 1. Optical fibers wil imserted into the fiber grooves and deliver the
light from one input to another output. Without @xial voltage, the mirror is in the beam path and
the incident signal from input fiber is reflected the mirror into the output fiber, the switch is a
the cross state. When the actuator is applied byoper driving voltage, the electrostatic force
induced by the actuator will drive the shuttle aondhe attached micro mirror out of the beam path.
As a consequence, the incident beam will be tramsdhdirectly into the other output fiber, where
the switch is at bar state. When the voltage sasdd, the mirror will latch to the original paiti
and the cross state is recovered [5]. In orderbi@io the dynamic equations of MEMS optical
switch, one needs to determine all forces, ele@ticsand mechanical, acting on the shuttle. It is
assumed that, the shuttle has one degree of freesmother situations, for instance, rotation
around the main body axes, translational along thasnwell as different vibration modes that
impose additional degrees of freedom are not censitihere. Finally, the optical model will be
achieved. We will perform this derivation in thrgeps.

57



Fractional Order Control of Micro Electro-Mechari&ystems The Analysis of Experimental Process ...pp.55-67

s

Figurel. SEM image of a MEMS optical switch [5]

Stepl: In order to obtain the model of electrostatic éotietween the two comb drive electrodes,
first the capacitance of the comb drive should le¢eminined as a function of position. The

capacitance is calculated as a sum of parallelati@paes among pairs of comb electrodes. The
total capacitance, as a function of the positigns given as [5, 12]

_2ngl (X +X,)

C(x) ;

(4)

Where n is the number of the movable comb fingegg=8.85x 10%F /mis the permittivity or

dielectric constant for free spact,and d are the thickness of the finger and the gap between
fingers, respectively,x is the shuttle position, anxdis the initial overlapping between the
electrodes. The electrostatic force between thetreldes of the capacitor is then given by [7, 12]

1 ,0C
f(V,X):EVZX (5)

Substitute the total capacitance denoted by (4 (&) to get the following relation for the
electrostatic force:

ne;r

vZ=Kkyv? (6)

e

fv,x)=

Where k, is the input gain ane denotes the voltage applied over terminals of thmlr drive

electrodes.

Remark 1. The electrostatic force depends only on the veltagross the capacitor not on the
position. It returns to the linearity between ttapacitance and the position over a wide range of
deflections that is the most important charactessif the comb drive.

Step2: Here, we will obtain mechanical forces imposedhi® shuttle. It consists of two elements.
The first one is the so-called stiffness of thepsnsion mechanism, and the second one is a
function describing losses such as damping antidnicAs mentioned before, damping is the most
difficult parameter to determine analytically, evemwough finite element analysis (FEA). The
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reason lies in the number of different mechanigmag tauses it, including friction, viscous forces,
drag, etc [7]. Generally, they can be defined &s [4

d(x,%)=-C (x)% = (d,x +d,)x 7)
2¢,
Where# is velocity of the air surrounding switch.

Now, according to the last steps, and utilizing levton's second law, the motion equation of the
MEMS optical switch is obtained as

mx =kyv?-d(x,X)-k x (8)

Where m=m +0.9m,,4 + 2.740,,,, is the effective moving mass of the shuttle. Foe t

mirror rigid
purpose of convenience of controller design procedety =[y, y,]' =[x X]'. Then (7) can
be rewritten as

Yi=Y,
. 9
{yz=N(yl,y2)+gu ©)

Where

N (YY) == @y tkeyy) L g=ie (10

And u =v ? will be referred to as the control signal.

Step3: Here, we will achieve the optical model for MEMStiopl switch. It is simply a function
that connects the intensity of light to the posital the blade, as shown in Figure 2. The lighnbea
is intercepted by the blade, increasing and derrgake through put of light. The Rayleigh-
Somerfield model is based on a Gaussian distributiothe intensity across the light beam. The

waist of the Gaussian beam coming from the fibev js As the beam propagates in free space the

waistw, is given as

2
V4 W
Wy :Wo,/]-"' (2_1)2 o Zrp = 1 ° (11)
R

Withw, =5.1um, z, =10umand A =1.55um . The transmitted power can then be described as
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Figure2. Optical model [5]
P=h(x)= 0.5(1—erf (M)J (12)
Wl

Whererj, denotes the distance from the fiber axis. For algaovey, the reader may study [12]. In

summary, the complete dynamic equations of the MEdi®al switch can be described by (7) and
(12). The terms of such a dynamical model satisfyies properties as mentioned in ref [15].

4. Robust SMC design

In this section, first considering uncertaintieshe MEMS model, a robust sliding mode controller
is proposed. Second, its robust stability is aredywith respect to the model uncertainties. Finally
we discuss the conditions for fractionally amalgtedasliding mode control to stabilize the global
under controlled system. Toward this end, supplageN(y,,y-) is the lumped sum of nonlinearities
given by

N (Y, Y2) =N, +AN (13)

WhereN , denotes the mean value of the correspontlir{y,,y,), andAN is the mismatch

between the actual and estimated stiffness and idgrngrms. Furthermore, a multiplicative model
is chosen for the control gain functignas

9 =049 (14)

With g,, denoting nominal value of . The following assumption turns out to be cruweiéhin the
analytical setting considered in this work.

Assumption 1: The terms on damping and stiffness are assumeel botnded by some known
function p(y,,y,t)as

AN [ < p(y,,Y,t) Oy,,y,00 (15)

Assumption 2: The control gain function satisfies:

ke
0< Y =2 <Ag< Ko =y (16)
g,m g,m
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Wherey,;,and y, . are real positive constants.
Assumption 3: The desired trajectory signalg, , andy,, are bounded by, , and V,,
respectively, i.e.,

Yy =Sy Vi = sup (17)

4.1 Traditional SMC design
Consider the dynamic equations of the MEMS opseatch given by Equation (8). Let

Yar =Y ®) o Yo O=[yu €) yau €] (18)
Define error function as
)=y 0y, 0=| 20 = 50 (19)

Whereeg, (t) denotes position error, ard(t ) represents velocity error. The sliding mode conirisl
characterized by the control structure defined by

U= uj(e) fors(e)>0 (20)
u(e) fors()<O0
Wheres(e) is a switching function and defined as
s(e) =€, (t)+le(t)=0 (21)

Wherel is a constanto be determined. The design of sliding mode cdonirnolves two phases.
The first phase is to select the switching hypengls(e)to prescribe the desired dynamic

characteristics of the controlled system. The seéqamase is to design the discontinuous control
such that the system enters the sliding nsgele= 0and remains in it forever. The interested reader

is referred to the works of [20-21] for completdadis on the historical aspects of the approach and
its wide range of applications. When in slidingg 8ystem satisfies

se)=0 ,se)=0 (22)

And the system exhibits invariance properties,dyrel motion independent of certain parameter
variations and disturbances [22]. From the equatinr{17), one can see that

s() =N, +AN +g,Agu -y, () +Te,(t) =0 (23)

And the equations governing the system dynamicshmeaybtained by substituting a so-called
equivalent control, denoted hwy, , for the original control

o == (N 2 0)~Te,0) 24

m
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Such that under the control the dynamics in thairgli mode becomes
Y2 =N +Ag (=N, +y,, ) -Te,t)) (25)

It must be noted that, existence of (19) constt@eecessary condition for the certain of a gjdin
motion on the sliding surface. A necessary andigafft condition for the existence of a sliding
regime ors(e) is that the well-known existence conditissi< 0 be satisfied. As a consequence of
this, the control algorithm implements a set ofisiea equations so that a control action forces the
MEMS to match the reference model (16). The conteator that satisfies the existence conditions
obeys a law of the type

u, =-ksgn(s) (26)

In which «is a scalar design parameter that will be used tat@rove stability of control system
andsgn represents the sign function.

Proof: To study the stability of the origin of the stafgace, we use Lyapunov’s direct method by
proposing the following Lyapunov function candidate

V (s) :%sz (27)
Differentiating (22) along equation (18) with egoas (19) and (21),

V(s)=ss=s ((1—Ag)(N m = Yaq(t) +Tey(t)) + AN —Kgsgn(s)) (28)
Using the assumptions 1 and 2,

V (8) <[] (1= Vo) IN s = ¥ o )+ T€,0)| + £y 1,y 2)-4) (29)

Thus, the sufficient condition to estabiéHS) = Ois
k> (1= Vi) IN @ = Y s ©)+T0,00)]+ 01X 1)) (30)

Remark 2: As it can be seen from (15), a discontinuousirglideachability condition is used to
eliminate deviations from the sliding surface ie fhresence of uncertainty. However, in practice,
due to the finite switching time, the frequencyn® infinity high. The control is discontinuous
across the switching surface and chattering tale®pA common approach to reduce chattering is
to introduce a boundary layes, around the sliding surface to use a continuadsgl reachability
condition within the boundary layer. Using a satiora functionsat, (s)instead ofgn(s)in

controller design will reduce chattering. The teat (s), with a saturation limi¢ >0, is defined
by
1 s>¢&

sat. (s)= S%Ej =4 s¢ ,||s¢ (31)

E
-1, s<-¢

Thus, equation (21) is replaced by
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u, =-ksat (s/¢€) (32)

This completes stability proof for control design

4.2 Fractional SMC design

In the sliding mode controllers for MEMS proposedfar, the MEMS dynamic is constrained to
follow a first order model as (16). This is not thely possible structure, and other designs with
more complex or time-varying surfaces may provideeptial advantages. As a result, in the related
literature, the absence of methods designed ankkmgmted via fractional differentiation in robust
and nonlinear control is visible.

Consider the MEMS system (8) with the following ww® of sliding surface to define dynamic
behavior of system in sliding mode

s(e)=DSe +Te, (33)

It must be noted that is designed such that the sliding mode ¥5)=0 is stable, i.e., the

convergence of to zero in turn guarantees tifaalso converges to zero. Any positive scalawill
satisfy this condition.
Theorem: The MEMS optical switch given by (8) witle switching surface (28) is Uniformly
Ultimately Bounded (UUB) by applying the controhla
=1 (-N_+DFe(DFoy. (1) -Te,())) -

U= Nm+D, (DFy (1) ~Tey(t))) - &son(s) (34)
Where the parameters are defined as before.
Proof: The proof is the same as in section 4.1dd@so, the same lyapunov function candidate (22)
is considered. Let us differentiatavith respect to time once to makeppear.

s(e)=D/"g +Te, (35)

By differentiating the Lyapunov function candidg®?) with respect to time, and using Equations
(29) and (30), we obtain
V (s)=s(D7HN +gu)-DXy,, () +Te,)
a- +a a- ; (36)
=S(Dt (N =AgN ) +(ag -1)(D*yy4 (t) ~Te,) - D; 1Kgsxgn(s))

Similarly, since Eq. (31) must be negative definiterefore, by choosing the control parameters as

K> max‘g_lDtl‘” (Dt"‘l(N -AgN )+ (g - 1)(Dt1+”’y1d ¢ )—Fez))

(37)

Uniform Ultimate Boundedness of the switching vialés(e) thus follows using the results of
equation (32). Therefore all variables are bounded,the switching variabse) will converge to
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zero, and the stability of the switching surfacangmtees that the tracking error will also converge
to zero.

5. Simulation results
The performance robustness of proposed contralleerified through simulations against the
parameter uncertainty. The MEMS optical switchssuemed to be driven by a uni-polar voltage
source, which its amplitude is limited by a satimrablock to 0 and 35 volt. Table | shows the
nominal values of its physical parameters. Thequarédnce of the proposed controller is compared
with that of the robust traditional SMC methodslassumed that the uncertain values of the mass,
stiffness, damping and friction are 20% higher ttt@measured. The controller parameters are set

ask =107, =2, anda =0.7. Fig. 3 shows the system response for short dispient of
actuator, for both SMC and FSMC. As it can be st#enputput signal converges to the desired set
point well and there are no oscillations. FSMC &déaster time response than traditional SMC due
to having additional control parameters in reseapzte. Fig.4 shows the actual control input. As it
is shown in Fig. 5, the sliding motion starts @@t and the tracking error then approaches the
origin by a spiral trajectory. Hence, it is straigivward to draw the conclusion that the system
under control is potentially stable by choosingahle control parameters satisfying the conditions
(25) and (32) even in the presence of system waio&HS.

Tablel. The MEMS parameters

k, =0.6+ 0.12Nm™ d, =0.0363t 0.00721 ¢ =(4.5+ 0.9% 10° Ns

— 2 — 9 =
k., =(1.9+0.38x 10° N M m = 2.35x 10°kg d =2.6um
x10°
6 T
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Figure3. Responses of the systenXip = 5um
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Figure5. Phase plane trajectories for the MEMS ufd¢C and FSMC

6. Conclusion

A Robust sliding mode controller is proposed torowene uncertainties of MEMS optical switches,

and to guarantee boundedness of the tracking eftassassumed that in dynamic equations of the
system, all the terms are uncertain and only sorfioernation about their upper/lower bounds is
available. The system stability was verified anabity. It was shown that by choosing control
parameters properly, the uniformly ultimately boeddess stability is guaranteed in any finite

region of the state space. Since the unmodeletdwtded dynamics of the system is
systematically encapsulated in the system modelotity influence that this imposes on the

stability is the respective bounds on the contragkens. The controller design strategy is simple
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and practicable with low computation burden whiciikes it easy to apply for control of MEMS
optical switch.
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