Journal of Modern Processes in Manufacturing amdi@tion, Vol.3, No.3, Summer 2014

Using Artificial Neural Networksto Predict Rolling Force and Real
Exit Thickness of Steel Strips

Mohammad Heydari Vini*'
1Department of Mechanical Engineering, MobarakemBlnalslamic Azad University, Mobarakeh, Isfahan,
Iran
E-mail of corresponding author: m.heydarivini@gntaim
Received: January 10, 2015; Accepted: April 29, 2015

Abstract

There is a complicated relation between cold flaitimg parameters such as effective input
parameters of cold rolling, output cold rolling der and exit thickness of strips. In many
mathematical models, the effect of some cold rglii@rameters has been ignored and the outputs
have not a desirable accuracy. In the other héredetis a special relation among input thickness of
strips, the width of the strips, cold rolling speethndrill tensions, required exit thickness oipstr
with rolling force and the real exit thickness bétrolled strip. First of all in this study, thdeaftive
parameters of cold rolling process modeled usingauificial neural network according to the
optimum network achieved by using a written progianMATLAB. It has been shown that the
prediction of rolling stand parameters with differgroperties and new dimensions attained from
prior rolled strips by an artificial neural netwdskapplicable.
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1. Introduction

In the last years, Artificial Neural Networks (ANKgave been proposed as powerful computational
tools due to the low time of processing that carrdaehed when the net is in operation. In 1998,
Gunasekera investigated the flat cold rolling psscavith back propagation in neural network
modeling. In his research, he expanded a nonlimsginematical model for training and testing the
problem [1].In 2001, Perzyk and Kochanski [2] poted ductile cast iron quality by ANN using
only the chemical composition of the melt. Shlarigak proposed a hybrid neuron/analytical
process model which is dependent on the considaiéavhich permits the calculation of the setup
for the mill's actuators. Yang et al. presentecearal network model to predict roll load which was
implemented to on-line roll-gap control. Guo anc $8) estimated the properties of Maraging steel
using ANN. They used alloy composition, procesgagameters and working temperature as input
parameters. Ozerdem and Kolukisa [4] predicted ren@ichl properties of AISIL0XX series carbon
steel bars using only three chemical contents@g$n Capdevila et al. [5] analyzed the influente o
processing on the strength and ductility of automeotow carbon sheet steels, but they did not
investigate the effects of Cooling Temperature (6d9ause of lack of a database. Comparison with
the indicated references showed that the authoRebf[6] used 16 input parameters. Thirteen of
them represented the crystallographic texture,fon¢he carbon content, one for the carbide size
and one for the rolling degree.
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Reddy et al. [7] expanded an artificial neural ratwfor investigating the torsional vibrations in
cold rolling line [8].They modeled medium carboreeds with alloy compositions and heat
treatment parameters as input, but they did notakkrolling parameters in their model.

Cold rolling of steel is a very complex process.oltedge of conditions in the rollingprocess is
essential to achieve a good quality of final prdauc Some of its parameters may be exactly
determined by measurement on the mill stand (getcaktimensions, rolling force, front and back
tensions, rolling velocity), some others can orgyapproximated by a suitable mathematical model
(e.g. hardening of the processed material, frictamefficient between rolls and strip, strip
temperature and flatness). There are some typasatifematical models for cold rolling. Off-line
models are used for post processing analysis bfhgatondition at a mill stand. The time for data
processing is not critical in this case. Hence,ard®tailed models and complicated time consuming
computational method can be used. On-line modelsused for real-time control of rolling. The
model issues have to be at disposal pending threrducoil rolling. Therefore, the simplified but
faster models are applied. The on-line models ke @sed for mill presetting. This type of model
is often called torque-force model. The model cormpuriction coefficient, steel hardening and
exit thickness of strips, roll force and torque ading to real data measured on the mill. The
friction coefficient depends on lubrication, rollivelocity and on the state of rolls abrasion. IStee
hardening is affected by chemical composition amevipus treatment of the material. Both
variables strongly influence rolling force, torqaed real exit thickness of the strip onthe milhsta
Incorrect mill presetting causes overloading offfastive exploitation of mill drive. Unbalanced
power distribution over the mill results in tandemstrip sliding in some mill stands. Hence, the
optimal tandem presetting has been changed frohtacooil.

But in the mathematical models, authors often igrtbe effect of rolling parameters on the rolling
process.For example, in many rolling force mod#is,effect of rolling speed has been ignored. So,
mathematical models are not very accurate methodetermine the rolling outputs. In this study,
the neural network has been used for predictingdhiag force and exit thickness of strip.

2. Experimental procedure

All the data come from the experimental resultshia two stands reversing cold mill system.
(Mobarakeh Steel Company, Esfahan, Iran). Figyseetents the two stand reversing cold mill. In
this tandem system, there are 3 passes each afiwag2 steps in two stands. At first, a coil & fe
into the payoff reel and is passed among two standsts end is clamped at the delivery reel. The
first pass occurs between the payoff reel and #tigaty reel and the second pass will be passed on
the opposite direction between the delivery reel e input reel. The third pass will be done ia th
opposite direction between the same reels.
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Figure 1.Two-stand tandem cold strip mill. (1) Gail#2, (2) tension meter, (3) laser velocimetdy,thickness gauge,
(5) stand #2, (6) stand #1, (7) coiling Machinea#tl (8) uncoiling machine [9]

3. ANN Modeling

Artificial neural network is a mathematical modeat can learn and generalize the things learned. It
makes a mapping function from input to output, mgvinformation about practical phenomena.
Because of the non-linear properties of neural aitsy they are suitable for describing complex
nonlinear phenomena which linear modeling techrsdae to describe. Basically, all the processes
that have an adequate number of measured dataecarodbeled by ANN [10]. The ANN used in
this study is a multilayer net which approaches tbgnitive models that try to describe the
operation of the human brain. The type of learmfithat net is known as supervised learning based
on the method of "back propagation”. That neurélvoek uses two or more layers with processing
neurons. Input layer accepts the input informateord the last layer carries output information. The
layers lying between the input and output layeks called the hidden layer. The basic unit (the
neuron) acts as a processing element. An adjustedight, representing the connecting strength,
lies between the neurons in each layer. The basictibn (net sum) of a neuron is to sum up its
inputs and by means of the transfer function todpoe an output. In our approach, in order to
obtain a good generalization capability, the LewsgkMarquardt and Bayesian Regularization
algorithm are used to train the neural networks taedrolling force and the exit thickness of strip.
They are predicted by feed-forward back propagatstilayer network in Cascade-Forward &
Feed-forward Back propagation neural networks. diiitey layer receives the external entries while
the output layer is responsible by the generatioi® output of the ANN. If there is a third layer,
this receives the name of “hidden layer”. The d&bn of the net structure as the number of hidden
layers and the number of neurons in those layesslisa problem without solution, although there
are some approaches. In the case of the numberuodms for the hidden layer, it is suggested as
2N+1 neurons, where N is the number of inputs efrtét. In this study, the Cascade-Forward Back
propagation and Feed-Forward Back propagation baee used.The used algorithms for updating
the weights among the neurons are such as:

Levenberg-Marquardt algorithm.

These algorithms are based on the hessian mauliparmit the network to learn the inputs more
efficiently. The LM algorithm is the fastest methosed in back propagation neural networks with
medium dimensions [10].

Bayesian regularization algorithm
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It is desirable to determine the optimal reguldrara parameters in an automated fashion. One
approach to this process is the Bayesian framewnorthis framework, the weights and biases of
the network are assumed to be random variables spiéftified distributions. The regularization
parameters are related to the unknown variancesciagsd with these distributions. These
parameters can be estimated using statistical igaés [10].

The schematic view of a multi-layer Artificial NerNetwork (ANN) used in this study for
modeling the cold rolling process is shown in Fegg®.The force and thickness models are
developed using the experimental results thatatarning example. The five input variables used
in the input layer are taken to be (1) input thiegs, (micrometer), (2) the exit required thickness
(micrometer), (3) the strip width, (mm), (4) thdliry speed, (rpm). The experimental results of the
rolling force (ton) and the real exit thickness ¢mimeter) are two variables in the output layers

Input layer 1thhidden layer  2th hidden
layer

Cutput layer

Input thickness
S Rolling force
(Tone)
Strip width
Exit thickness of
Rolling speed the strip

(micrometer)

Mandrills tensions

Figure 2.Configuration of the BP neural network rlddr cold rolling process

The activation functions for finding the optimunatgt of the learning process are:

1-sigmoid function
1

Yi = 1+2exp (—%j) (1)
2-hyperbolic tangent

2
Yi= 1+exp(-2xj)-1 (2)
x; is the sum of the inputs for each of tfdgyer neuron and is computed from equation 3.
Xj = Xiz1 Wijxy; T bj 3)
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For feed-forward back propagation multilayer netwwvoand Cascade-Forward Back propagation
multilayer networks, m is the number of neuronthieoutput layew;; is the weight between th® i
and | layersy; the output of§ neuron andjis the bias for the neuron in tHelpyer [10].

For finding a network with a suitable topology aoptimizing the cost function, the root mean
square error criterion has been used which is:

RMSE = \/%zﬁzl(sk — Ty)? 4)(

Where RSME is the mean square efiis the output of the network for th&" patteriTy is the
real amount and m is the number of learning pat#®iso, in this study the absolute mean error has
been used and that is:

1
Ema = 3 Xk=1/8k — Tl (5)
First of all, for increasing the accuracy and tipeexl of the neural network, inputs have been
normalized (Equation 6).

Xi=Xoms
X — 1 min 6
n XmaX_Xmin ( )

WhereX,, is the normalized valueX; is the value to normaliZg,;,and X,,,,x are minimum and

maximum variable values respectively. The averageumt for feed-forward back propagation
multilayer network and Cascade-Forward Back propagamultilayer networks with learning

algorithms and different topologies have been ihgated [10].

4. Results and discussion
In the Tablel the inputs are shown. There are twthaus for optimizing in the neural network in
this paper, FFBP and CFBP.

Table 1.The experimental rolling stand parameterfs for neural network)

inputs Out put
. Required . Tension at the .
3] Input thlckr?ess thickr?esses of width _Of the both ends of the Rolling exit thicknesses of strips
3 Of. the strip strips after rolling strip strip force (micrometer)
(micrometer) . (mm) (ton)
(micrometer) (ton)
1 330 220 840 627 795 216
2 330 220 830 582 757 216
3 490 300 930 414 849 294
4 340 240 850 367 725 235
5 330 220 785 314 698 216
6 329 220 770 302 667 216
7 317 210 715 398 625 206
8 418 300 810 595 733 294
9 340 230 762 441 739 225
10 341 230 762 273 790 225
11 339 240 878 378 799 235
12 340 240 878 381 771 235.1
13 329 220 753 355 620 216
14 386 260 716 465 642 255
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Table 2. The training errors for different layamsurons with the same activation functions in ti&8E network

Training Eva The number of layers Activation
. . epochs
algorithm % and neurons function
0.045
0. 123 5-10-18-2 LOGSIG 34
0.0905 5-18-2 TANSIG 26
0.0439
M 0.077
0164 5-10-25-18-2 LOGSIG 85
0.09
0.05 5-10-18-2 TANSIG 50
0.181
0.077 5-18-2 TANSIG 28
BR 0.053
00780 5-10-25-18-2 LOGSIG 108

Table 3. The training errors for different layereurons and activation functions in the CFBP nétwor
Training Eva The number of layers Activation

algorithm % and neurons function epochs

0.08 5-20-2 TANSIG- 57
-0.07 LOGSIG

LM -0.07 5-15-18-10-2 LOGSIG- 62
T 019 LOGSIG-
TANSIG

0.196 5-18-12-2 LOGSIG- 85
-0.08 TANSIG-

0.142 5-15-18-10-2 TANSIG- 45
0.142 LOGSIG

BR 0.2 5-18-12-2 LOGSIG- 46
0.044 TANSIG-

.107 5-20-2 TANSIG- 57
~063 LOGSIG

Table 4. The training errors for different layemeprons with the same activation functions in tR8F network

Trair?ing Eva The number of layers Activa_tion epochs
algorithm % and neurons function
% 5-10-18-2 LOGSIG 40
LM % 5-18-2 TANSIG 26
0.033
~—0.050 5-10-25-18-2 TANSIG 85
% 5-10-18-2 TANSIG 50
BR % 5-18-2 LOGSIG 28
% 5-10-25-18-2 TANSIG 47
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Table 5. The training errors for different layemsurons and activation functions in the FFBP néeitwor

Training Eva

The number of layers and Activation

algorithm % neurons funcion  SPO°hs

LM % o162 I_Tiigg 26
% 5-10-25-18-2 #25;'2_' 56
% 5-10-18-2 'II:,SI\(IBSSII(S 26
0.107 3
% 5-10-25-18-2 T_’g’\(‘fs'% 47

A total of 14 examples for training the network amb examples for testing the network are
adaptedThe learning results were compared with the expenmial results. They are listed in Tables
2- 5. As listed in these Tables, small values atget error show that the neural network can
realize for superior mapping relations between isgund outputs. The implemented neural network
algorithm is used to predict two testing exampl&be testing results as compared to the
experimental results are listed in Table 6.

Table 6. Evaluation of neural network for the neated
The number of

LAYER ANN ;éi'::gi Eva layers and A}Et:g{;?]n epochs
neurons
-0.0 -
15 FFBP LM 0—057 5-10-18-2 I}iﬁgg 40
16 CFBP BR % 5-10-18-2 _:fgl\?ssllg 76
4. Conclusion

ANN is a suitable way to predict the rolling foraad the exit thickness of strips. The best neural
network for training the data is the feed-forwarack propagation with Levenberg-Marquardt
algorithm and LOGSIG-TANSIG-LOGSIG activation fuimet for 5 neurons in the first hidden
layer, 10 neurons in the second hidden layer, 18ams in the 3th hidden layer and 2 neurons in
the last hidden layer (.By using this method, we can predict the rollfogce and the exit strip
thickness in the actual rolling condition with grpeopriate accuracy.

5. Nomenclature

x; : Sum of the inputs

yj * Activation functions
RSME : mean square error
Sk : Output of the network
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Ty : Real amount

m: number of learning pattern

X, : normalized value

X; : Value to normalize

Ximin» Xmax - MiNimum and maximum variable values
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