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Abstract 
In this note, we show that the impedance control strategy proposed in the paper is not feasible from 
practical implementation point of view. Next, a robust impedance controller is proposed for 
electrically driven robots using Fourier series (FS). The fact that robots' actuators have limited 
voltage is also considered in controller design procedure. In comparison with other impedance 
controllers using FS, the proposed controller results in fewer numbers of FS and consequently less 
computational load. These superiorities become more dominant when the manipulator degrees of 
freedom are increased. Simulation results on a Puma560 manipulator actuated by permanent magnet 
direct current electrical motors indicate the efficiency of proposed method. 
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1. Introduction 

We have witnessed widespread industrial applications of robotic systems in which the interaction 
between the manipulator and environment should be managed automatically, such as assembly, 
polishing, grinding, mechanical part mating and also medical surgery. One of recent and high 
technological examples in this field is the exoskeleton robot [1, 2]. Simultaneous control of both 
motion and force is the main challenge in these applications [3, 4]. Many control laws have been 
developed to address this problem. However, it seems that impedance control [5, 6] and hybrid 
position/force control [7, 8] are the most important strategies [9-12]. In hybrid position/force 
control, one controller is responsible for position tracking in the free space and another controller is 
designed with the aim of force control along the directions in which position is constrained [13]. 
However, in impedance control, regulation of the dynamic performance of the system by careful 
selection of impedance parameters is considered. It is worthy to note that, almost all previous 
control strategies have ignored the actuator dynamics in their design procedure. In other words, 
their control laws calculate the desired torque that should be applied to the manipulator joints.  
To cope with this problem, recently a voltage-based impedance controller has been developed 
considering actuator input signal constraint [1]. It has been assumed that, there is not any 
discrepancy between the nominal actuator parameters used in the impedance control law derivation 
and the true ones. In first view, it seems that the proposed voltage-based control strategy is very 
attractive, since it does not require any information from the manipulator dynamical model, the 
actuator mechanical subsystem, the inverse of the Jacobian matrix, and also its transpose. However, 
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some further considerations show that applying the voltage-based impedance control strategy for 
the actuated manipulator dynamics leads to a system with infinite-gain loop, which is not practical. 
Since impedance control requires the dynamical model of the manipulator, development of adaptive 
control algorithms is recommended to compensate for uncertainties. Many dynamical parameters of 
the manipulator such as mass and inertia of the links and the positions of the mass centers can be 
calculated using powerful software packages. Nevertheless, there may be some small errors and 
consequently, the calculated or measured quantities are just nominal values. As a result, if the 
structure of the system dynamics is known, then adaptive control is a suitable option to compensate 
for the parametric uncertainties such as the differences between the obtained nominal values and 
their unknown correct values [14]. 
Various adaptive impedance controllers have been developed in the last decades [15-23]. In [15], 
adaptive position control has been applied to robots that work in constraint environments. A model-
free impedance control scheme has been developed in [16] using the framework of direct adaptive 
control. The information about the details of manipulators dynamic equations and also the 
parameters values are not required in this controller. To eliminate the need for acceleration signals, 
another adaptive impedance controller has been also designed in [17]. Neural networks have been 
also applied to adaptive impedance control. In [18], the matrices introducing the manipulator 
dynamics have been estimated in the controller using neural networks. Actuator dynamics have 
been excluded in this controller. Reinforcement learning approaches have been also applied to 
adaptive impedance control. A discrete-time Q-learning impedance controller has been developed in 
[19]. An impedance controller accompanied by passivity analysis has been presented in [20]. Based 
on nominal models of the manipulator, a hybrid impedance controller has been presented in [21]. 
For human-robot interactions, an impedance controller based on model reference strategy has been 
presented in [22]. With the aim of improving hybrid impedance control in complicated interaction 
tasks, a sliding mode controller has been designed in [23]. An important issue is that, most of these 
controllers require the regress or matrix. The reason is that these approaches utilize the property of 
linear parameterization. In addition, they cannot cope with unstructured uncertainty and external 
disturbance adequately, which is a significant disadvantage in almost all the addressed approaches.  
Recently, some adaptive controllers have been developed which are based on the FS or Legendre 
polynomials (LP) [24-32]. The main idea is representing the system uncertainties using orthogonal 
basis function such as FS, Bessel functions, LP, and etc. In this strategy, the regressor matrix is not 
required which consequently simplifies the controller design procedure. Moreover, acceleration 
signals are not needed in this strategy [33-34]. It is not recommended to use these signals in the 
control law, since they are usually contaminated by noise and will affect the system performance. 
However, requirement to weighting matrices with large dimensions makes its real-time computation 
consume too much time. 
In this paper, a robust impedance controller is developed for electrically driven robot manipulators 
using FS. The MIMO structure of electrically driven robot is firstly modeled as a SISO system 
maintaining the coverage of interaction among joints and treating the coupling effect as uncertainty. 
In other word, we have n disturbed double integrator system. The lumped uncertainty is 
approximated by FS. Based on the stability analysis, some adaptation laws will then be obtained for 
the unknown coefficients of FS. The advantages of proposed controller over previous adaptive 
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controllers using FS are simplicity and less computational burden. Moreover, the required number 
of FS for uncertainty estimation is considerably reduced in the proposed method.  
This paper is divided into 5 sections. After the introduction, section 2 discusses the main concerns 
regarding the voltage-based impedance control strategy implementation. The proposed impedance 
control design and stability proof are explained in section 3. Simulation results are illustrated in 
section 4 using a Puma560 robot manipulator actuated by geared permanent magnet dc motors and 
finally, conclusions are drawn in section 5.  
 
2. Concerns Regarding Voltage-Based Impedance Control Strategy Implementation  
Following the same notation as in the paper [1], the dynamic equation of an n-joint electrically 
driven robot interacted with the environment is described as [1] 

T( ) ( , ) ( ) ( ) ext l+ + + =D q q C q q q g q J q F τ&& & &  (1) 

1 1
mm m l a

− −+ + =J r q B r q rτ K I&& &
 

(2) 

1 ( )a a b t−+ + =LI RI K r q u& &
 

(3) 

In which the parameters and also the signals are the same as those introduced in [1], with the same 
dimension. From practical point of view, the range of actuator input may limit by some upper and 
lower bound [35]. Suppose that the input limitation is described as 

( )=sat( ( ))t tu v
 

(4) 

Where
 

[ ]1 2( ) ( ) ( ) ( )
T

nt u t u t u t=u L  is the actual actuator input,

[ ]1 2( ) ( ) ( ) ( )
T

nt v t v t v t=v L  is the controller output, and 

[ ]1 2( ( )) ( ( )) ( ( ))sat( ( )) T n
nsat v t sat v t sat v tt ∈ℜ=v L  represents the saturation function. When 

controller output falls out of linear range of the actuator operation, actuator saturation occurs. The 

non-implemented control signal by the device, denoted as maxdzn( ( ), )t vv , is then given by [36] 

maxdzn( ( ), )= ( ) sat( ( ))t v t t−v v v  (5) 

Where
 max maxmax 1 1dzn( ( ), ) ( ( ), ) ( ( ), )

T n
n nt v dzn v t v dzn v t v = ∈ℜ v L  is the dead-zone function, 

and max 0v >  is the maximum admissible voltage of the motor. Now, substituting (4) into (3) and 

using (5) we have 

max
1 ( ) dzn( ( ), )a a b t t v−+ + = −LI RI K r q v v& &

 
(6) 

Assume that actuators are in the linear operation area, i.e, ( ) (t)t =v u  [1]. It means that

maxdzn( ( ), ) 0t v =v . Now, our aim is to develop a control input(t)v , such that the desired impedance 

relation can be achieved as follows 
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( ) ( ) ( )R d R d R d ext− + − + − = −M B K Fx x x x x x&& && & &
 

(7) 

Where 
n

R ∈ℜM  is the desired inertia,R
n∈ℜB  is the desired damping, and R

n∈ℜK is the desired 

stiffness. It should be mentioned that these matrices are diagonal with positive constant elements. 
The actual task-space trajectories are denoted by x and the desired task-space trajectories are 

denoted by dx . Also, extF is the generalized force applied to the robotic arm by the environment and 

( )=x J q q&&
 

(8) 

In which
 

( ) n n×∈ℜJ q  is the Jacobian matrix. With this in mind, we choose the same impedance 

control law as [1] 

1 11 1 ((t) ( ) ( ))a a b d R ext R R d
− −− −= × ++ + − −v RI LI K r J q x B F B K x x& &

 
(9) 

Where we assumed that
 dx , and dx&  are all bounded, and 0R =M [1]. As it can be seen, feedbacks 

of x , q , aI , and aI&  are required to implement the control law given by Equation (9). Moreover, it 

requires exact values of electrical resistance, electrical inductance, back EMF constant, gear-box 
ratio, and Jacobian matrix of the robotic system. Substituting the control law (9) into actuator 
electrical subsystem (6), and using (8), we have 

( ) ( )R d R d ext− + − = −B K Fx x x x& &
 

(10) 

Which is a linear stable system. Consequently, all variables d−x x , and d−x x& &  are bounded if extF  is 

bounded. Figure 1 illustrates a schematic diagram of the closed-loop system. For the sake of 
discussion, consider closed-loop controlled system proposed by [1] in the case where system is in 
the linear operation area as shown by Figure 2. Under this circumstance, we have 

1( ) )(( )a a in
−+ + +=I R Ls R Ls I u

 
(11) 

Or, equivalently 

1( )a a in
−= + +I I R Ls u

 
(12) 

As can be seen, closed-loop control system includes an infinite-gain internal control loop that is not 
practical. This is the main concern in the aforementioned paper. 
 
3. The Proposed Impedance Control Strategy  
 
3.1 Control law improvement 
As mentioned in previous section, the voltage-based impedance controller [1] cannot be applied for 
the actuated robotic manipulator. Moreover, it does not consider the role of saturation function in 
controller design. To solve these problems, we extend the results obtained by [1]. Combining 
equations (1), (2) and (6), it follows that 
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1
max( ) ( , ) ( ) ( ) ( ) dzn( ( ), )T

m ext at t v−+ + + = − −D q q C q q q G q RK rJ q F v LI v&&& & &
 

(13) 

 
 
 
 

  

  

  

  

  

 
 

Figure1. Block diagram of the closed-loop controlled system using voltage control strategy  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure2. Block diagram of the closed-loop controlled system using voltage control strategy (linear operation area)  

 

Where the matrices( )D q , ( , )C q q& and ( )G q  are completely described in [37]. It is desirable to 

describe the actuated manipulator dynamics in its operational space. Let the vector n∈ℜx  be 
described as [8] 

( )=x φ q  (14) 

In which ( ) n n∈ℜ →ℜφ   is generally a nonlinear mapping describing the transformation of the 

joint-space to the task-space. We can relate the task-space accelerations signals to those in the joint 
space by: 

( ) ( )=x J q q+J q q& & &&&&
 

(15) 

Now, substituting (15) into (13), multiplying both sides by ( ) T−J q , and using (8), it follows that 
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1

max

( ) ( , ) ( ) ( ) ( ) ( ) ( )

( ) dzn( ( ), )

T T T
m ext a

T

t

t v

− − −

−

+ + + = −

−

&&& & &M x x H x x x G x J q RK rJ q F υ J q LI

J q v  
(16) 

In which the matrices ( )M x , ( , )H x x& , ( )G x  and ( )tυ  are described in [38]. Now, we are ready to 

present the proposed robust impedance control strategy by introducing the following target 
impedance 

( ) ( ) ( )R t d R t d R t d ext− + − + − = −M B K Fx x x x x x&& && & &
 

(17) 

Where n
t ∈ ℜx denotes the task-space positions of the end-effectors in the reference model (17). The 

proposed controller is designed such that t→x x asymptotically, which yields convergence of the 

new target impedance (17) to (7) as desired. Toward this end, assume that equation (16) for the ith 
row can be described by 

( ) ( ),       =1,2,...,i i ix t t i nυ= + ℑ&&
 

(18) 

Where ix is the ith element of vectorx , and 

1,

1
max

( ) (1 ( )) ( ) ( ( , ) ) ( ( ))

           ( ( ) ( ( ) dzn( ( ), ))) ,    =1,2,...,

n

i ii i ij j i i
j j i

T T
m ext a i

t m x x m x x

t v i n

= ≠

− −

ℑ = − − − −

− + +

∑ H x x x G x

J q RK rJ q F LI v

&& && & &

&
 

(19) 

Before we go to the details of controller derivation, we present the two following assumptions. 
Assumption 1. The singular positions are out of the operating range. 
Assumption 2. Suppose that the nonlinear function( )i tℑ is an unknown bounded function, and its 

variation bound is also assumed to be unavailable.  
As a result of Assumption 2, traditional adaptive control scheme is not applicable. Based on these 
circumstances and assumptions, a proportional-derivative controller is designed in the form of 

( ) ,    =1,2,...,i p i d i p it K x K x K i nυ = − − + ℘&
 

(20) 

In which the positive proportional and derivative scalar gains pK and dK are selected by the designer, 

and i℘ is the new control input to be designed later. Substituting (19) into (18) leads to 

( )i d i p i p i ix K x K x K t+ + = ℘ + ℑ&& &
 

(21) 

We now develop a procedure to calculate the control input i℘ . To this end, we introduce a reference 

model as 

d d d d
i d i p i p ix K x K x K+ + = ℘&& &

 
(22) 

Where d
i℘  is the ith row of vector tx . Subtracting (22) from (21) results in 
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( )d p p i ix K x K x K t+ + = ℵ + ℑ&& &% % %
 

(23) 

Wherex% and ( )i tℵ are defined as 

 ( )  , ( ) ( )d d
i i i i itx x x t t= − = −ℵ ℘ ℘%

 
(24) 

One can describe the system (23) in state space in the form of 

( )h Ah B Bp i iK t= + ℵ + ℑ&

 
(25) 

Where 

2
0 1 0

   ,      ,   
1

A B h
p d

x

K K x

     
= = = ∈ℜ     − −     

%

&%  
(26) 

Now, our aim is finding a corrective control input iℵ so thath becomes bounded by a small positive 

constant or converges to zero. It has been assumed that we have not any knowledge about the 

actuator parameters and robot dynamic model. With this in mind, FS will be used to describe( )i tℑ  

as linear combinations of sinusoidal functions as 

( ) W Z
i

T
i t εℑℑ = +

 
(27) 

WhereW ϒ∈ ℜ  is weighting vector, Z ϒ∈ ℜ  is the vector of sinusoidal terms, 
i

εℑ  is the truncation 

error of ( )i tℑ  caused by considering a finite number of sinusoidal functions in the proposed FS and 

ϒ  represents the number of basis function used (sinusoidal functions). Making use the same set of 
basis functions, we proposed the corrective control input as 

1 ˆ( ) W ZT
i

p

t
K

ℵ = −
 

(28) 

WhereŴ ϒ∈ ℜ  is an estimate ofW . When ( )i tℵ produced by (28), it should be translated into the 

main control input ( )i t℘ by 

( ) ( ) ( )d
i i it t t℘ = ℵ +℘

 
(29) 

Now, substituting (27) and (28) into (26), we obtain 

h Ah BW Z B
i

T εℑ= + +& %

 
(30) 

In which ˆW W W= −%  is error vector of the FS coefficients.  
Theorem 1: Choose the parameters updating laws as 

1ˆ ˆ( )W Γ ZB Ph WT σ−= −&

 
(31) 
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Where Γ
ϒ×ϒ∈ℜ  is positive definite constant matrix, and σ is positive constant. Then, the FAT-

based tracking control laws (21), (28) and (29) for the ith subsystem (19), guarantee uniformly 

ultimately bounded stability of h , and W% . 
Proof: Consider a positive definite function as 

( , )h W h Ph W ΓWT TV = +% % %

 
(32) 

Differentiating ( , )h WV % along the trajectory of (28), and using (29), the inequality below can be 

obtained easily. 

ˆ( , ) ( ) 2 2h W h A P PA h h PB W W
i

T T T TV ε σℑ= + + +& % %

 
(33) 

It should be mentioned thatA  is Hurwitz. As a result, symmetric positive definite matrices Q and 

P  can be calculated based on the Lyapunov equation 

A P PA QT + = −
 

(34) 

Thus, substituting (34) into (33) we have 

22
min max

ˆ( , ) 2 2

               ( ) 2 ( ) 2 ( )

h W h Qh h PB W W

Q h P h W W W

i

i

T T T

T

V ε σ

λ λ ε σ

ℑ

ℑ

= − + +

≤ − + + −

& % %

% %  
(35) 

Result 1: Assume that number of sinusoidal functions is selected so that the truncation error is small 
and ignorable. Consequently, the σ -modification terms in (31) can be excluded. As a result, (35) 
can be simplified to 

2
min( , ) ( )h W Q hV λ≤ −& %

 
(36) 

And asymptotic convergence of h will be obtained using the Barbalat's Lemma. 

Result 2: If the truncation error
i

εℑ in (35) cannot be ignored, the following procedure should be 

used. It is obvious that 

2
2 2 2max

min max min
min

2 22

2 ( )1
( ) 2 ( ) ( )

2 ( )

1
( )

2

i i

T

λλ λ ε λ ε
λℑ ℑ− + ≤ − +

− ≤ −% % %

P
Q h P h Q h

Q

W W W W W
 

(37) 

Substituting these inequalities into (35) yields 

2
22 22max

min
min

2 ( )1
( , ) ( )

2 ( )

P
h W Q h W W

Q i
V

λλ σ ε σ
λ ℑ≤ − − + +& % %

 
(38) 

Note that 

22
max max( , ) ( ) ( )h W P h Γ WV λ λ≤ +% %

 
(39) 
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Then, (38) can be further derived as 

( )

2
max min

2
2 22max

max
min

1
( , ) ( ) ( )

2

2 ( )
( )

( )

h W P Q h

P
Γ W W

Q i

V Vµ µλ λ

λµλ σ ε σ
λ ℑ

 ≤ − + − 
 

+ − + +

& %

%
 

(40) 

By selecting min

max max

( )
min ,

2 ( ) ( )

Q
P Γ

λ σµ
λ λ

 
≤  

 
, the second and third terms of (38) become negative, 

and thus 

2
22max

min

2 ( )
( , )

( )

P
h W W

Q i
V V

λµ ε σ
λ ℑ≤ − + +& %

 
(41) 

The last equation is guaranteed to be negative whenever 

0

2
22max

min

2 ( )
sup ( )

( )

P
W

Q i
t t

V
τ

λ σε τ
µλ µℑ

< <
> +

 
(42) 

Thus, it has been shown that the vectors h  and W% are uniformly ultimately bounded.■ 

Because h  is bounded, boundedness of ix  , and ix&  can be obtained whereas dix  and d
ix&  are 

bounded. Moreover, applying this result to all subsystems gives boundedness of x andx& , 

respectively. Since the Jacobian matrix is bounded, boundedness of 1( )−=q J q x& &  can be obtained 

where as x&  is bounded. In addition to this, 1

0

( ) dt (0)
t

− += ∫q J q x q&  is also bounded for finite 

operational times. Therefore, the robotic system including manipulator and actuators will be stable, 
since boundedness all of system states have been guaranteed. 
On the other hand, (41) also implies  

0

0

2
2( ) 2max

0
min

2 ( )
( , ) ( ) sup ( )

( )

P
h W W

Q i

t t

t t
V e V tµ

τ

λ σε τ
µλ µ

− −
ℑ

< <
≤ + +%

 
(43) 

It is clear that the lower bound of V in (32) can be calculated in the form of 

22
min min( , ) ( ) ( )h W P h Γ WV λ λ≥ +% %

 
(44) 

This implies that 
min

( , )

( )

h W
h

P
V

λ
≤

%

. Together with (41), we have the bound for h as 

0

0

( ) 2
0 max2

min min min min

( ) 2 ( )
sup ( )

( ) ( ) ( ) ( )

P
h W

P P Q Pi

t t

t t

V t
e

µ

τ

λ σε τ
λ µλ λ µλ

− −

ℑ
< <

≤ + +  

                                                                                                                                            (45) 
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From (45), it is concluded that the magnitude of the h  is bounded. Its bound is given by some 

constants and an exponential function. In addition, from (45), it follows that by proper tuning of the 
controller parameters, the convergence rate of the tracking error can be improved. Hence, 

0

2
max

min min min

2 ( )
lim sup ( )

( ) ( ) ( )

P
h W

P Q Pit t tτ

λ σε τ
µλ λ µλℑ→∞ < <

≤ +
 

(46) 

Similarly, we can obtain the following upper bound for the vector W%  

0

2
max

min min min

2 ( )
lim sup ( )

( ) ( ) ( )

P
W W

Γ Q Γit t tτ

λ σε τ
µλ λ µλℑ→∞ < <

≤ +%

 
(47) 

Thus, the satisfactory performance of the controller in transient state is concluded.■ 
 
4. Simulation Results 
In this section, simulations of a 6-DOF electrically driven robot are conducted to illustrate the 
performance of the proposed controller. Comparisons between the proposed controller and the 
voltage-based controller presented in [1] have also been done. To this end, a puma 560 robot 
manipulator with six revolute joints was selected. The corresponding dynamic model and kinematic 
parameters are found in [39-40]. The actuator dynamic model parameters are explained in [38]. 
According to [3], by selecting the roll, pitch, and yaw angles for describing the orientation of the 
end-effectors, the following rotation matrix is obtained: 

[ ] ( ) ( ) ( )

cos( )cos( ) cos( )sin( )sin( ) sin( )cos( ) cos( )sin( )cos( ) sin( )sin( )

sin( )cos( ) sin( )sin( )sin( ) cos( )cos( ) sin( )sin( )cos( ) cos( )sin( )

sin( ) cos( )sin( ) cos( )cos( )

α β γ

α β α β γ α γ α β γ α γ
α β α β γ α γ α β γ α γ

β β γ β γ

=

− +

= + −
−

z y xR R R R


 
 
  

 
(48) 

Where the basic rotation matrices about the three coordinate axes are denoted by( )xR γ , ( )yR β , and 

( )zR α . For each motor, maxu is set to 60volts. Assume that a circle with the radius of 0.2m is defined 

as the desired trajectory for the manipulator end-effectors. The orientation was commanded to stay 
constant throughout the circular path. To put some constraints for the manipulator motion in the free 

space, suppose that a vertical wall is located at 0.55ex m= along the y-axis. Assume that the 

stiffness of the wall is 5000 ( / )ek N m= . The environment dynamic was modeled as a regular 

spring, i.e., e( )ext ef k x x= − for ex x≥ , where extf denotes for the force applied on the surface, and 

x is the coordinate of the end-point in the X direction. As a result, we have [ ]T0ext extfF 1́ 5= . The 

initial values of all joint positions are defined as q(0)=[2.3358 1.5480 0.1431 -1.6952 0.7725 -
0.6125]T. The initial condition of the target impedance states is ht(0)=[0.4 -0.2 0.4 π/2 π/4 0]T that is 
the same as the initial value of the desired task-space trajectory. The target impedance matrices are 
selected to be BR=diag(100)6×6,and kR=diag(1500)6×6. Under these settings, the results of the 
voltage based impedance controller proposed by [1] have been illustrated in Fig. 3 to 4. Task-space 
tracking performance is represented in Figure 3. In addition, Figure 4 shows the applied voltage of 
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the actuators. As it can be seen, the control system presented in [1] cannot give suitable tracking 
trajectory, in spite of bounded control signal. 
Due to comparison purpose, consider the impedance control strategy proposed in section 3. Suppose 

that the five first terms of FS are used, i.e., 5ϒ = . Therefore, 5ˆ
ℑ ∈ℜW . The initial values of the FS 

coefficients are set to zero. The gain matrices Γ (convergence rates of the FS coefficients) were 

chosen as diagonal matrices and were tuned manually 5
510−= ×Γ I in which ( )•I  is the identity 

matrix. First, it is assumed that the truncation error is ignorable. Therefore, the σ -modification 
parameters should be selected zero. Also, suppose that the target impedance matrices are defined as 
before, except that MR=diag(0.5)6×6. The controller parameters were chosen as 8000pK = , and

80dK =  for all joints. It has been assumed that, matrices of ( )M x , ( )G x , ( , )H x x& , and ( )J q are 

unknown. 
 

 
Figure3. Tracking performance of end point in the task space 
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Figure4. Motor voltages 

 
Under these settings, Figure 5 represents the desired trajectory and also the trajectory that the end-
effectors have followed in the task-space. We are faced with different phases of operation. The 
reason is that the distance between the surface and the desired initial endpoint position is relatively 
large. The manipulator moves toward the wall without any constraint. Then, as it can be seen in 
Figure 6, the arm will interact with the wall around t=0.27sec. Because of collision, extf is 

generated. The end-effectors slide on the surface. Simultaneously, it exerts a force to the wall. The 
tracking error norms are plotted in Figure 7. According to this Figure, the steady state value of 
position error is in the range of 2×10-3 (m). The motor voltages computed by the proposed 
controller are satisfactory that can be seen in Figure 8. According to this Figure, the signals are 
smooth. Moreover, actuators are not saturated. Furthermore, computation of the high-dimensional 
complex regress or/weighting matrices is prevented in this algorithm that considerably simplifies 
the tuning procedure and also its practical implementation. 

To show the role of corrective control input ( )i tℵ , simulation is repeated without the presence of 

corrective term ( )i tℵ . The tracking performance is degraded as shown in Figure 9. Tracking error 

norms for this case are plotted in Figure 10. 
 
5 Conclusion 
In this note, we showed that the voltage-based impedance control strategy proposed in the paper [1] 
cannot be applied for the actuated robotic manipulator. As an extension in the field of impedance 
controller design, a robust impedance controller using FS has also been proposed in this paper. 
Actuator saturation has been considered. Moreover, the controller has been designed so that the 
information of the system and environment are not required. Uncertainties have been estimated 
using FS. Satisfactory performance in the transient state has also been investigated. Simulation 
results on a Puma560 verify the efficiency of the proposed controller. 
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Figure5. Tracking performance of end point in the task space 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure6. External forces 
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Figure7. Norm of tracking error  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure8. Applied torques 
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Figure9. Tracking performance of end point in the absence of auxiliary control input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure10. Norm of tracking error in the absence of auxiliary control input 
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