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Abstract 

Hydromechanical deep drawing is a new process in sheet metal forming. In hydromechanical deep 

drawing, a chamber of fluid replaces the matrix and the final form of part is determined based on the 

form of rigid punch. This process can produce parts with more drawing ratios than traditional deep 

drawing. In this paper, the hydromechanical deep drawing (HDD) of square parts was studied using 

the finite element method (FEM), and the effects of different parameters of the process such as pre-

bulging pressure, chamber pressure, and friction coefficient on the thinning were investigated. 

Simulation is done using Abaqus software. St12 sheets have been formed and the effect of parameters 

on thickness distribution is determined. A study was also carried out using an experimental setup to 

verify the FEM results. Results show that flange wrinkling decreases by increasing chamber pressure. 

Also selecting appropriate pre-bulging pressure can decrease the thinning significantly. Finally, the 

numerical results were compared with experimental data. 
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1. Introduction 

The hydroforming of sheet metals, which has been developed widely in recent years, can replace a 

few of the metal forming methods. Advantages of this method, compared with traditional forming 

processes, are the ability to form of the complicated parts, increase of forming limit, the possibility 

of forming in one stage and then decreasing the number of production stages, higher quality of the 

produced parts, simplifying and increasing lifetime of the tools [1]. 

Recent studies on the optimization of process parameters have been focused on non-circular parts. 

Park et al. [2] studied the optimization process parameters for the parts with an oval cross-section. 

The effect of radius of punch and die in the deep drawing process has been studied by FEM and 

obtained results were compared with experimental results. Pegeta et al. [3] reported their work on 

achieving the optimum geometry of the blank for rectangular and circle parts in the deep drawing 
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process. They also considered the anisotropy and friction effects in the numerical study. Onder and 

Tekkaya [4] optimized the process parameters in the production of parts with different cross-sections 

by using hydromechanical deep drawing (HHD) and traditional deep drawing. PAMSTAMP was 

used to analyze the forming process. Zhang et al. [5] studied the wrinkling and rupture defects in the 

forming of parabolic parts by HDD process numerically and experimentally. According to achieved 

results, thinning takes place in the initial stages while wrinkling happens at the final stages of forming 

process. In another study [6], they analyzed the production of cone boxes with a rectangular section 

using the HDD method. The numerical analysis of the process was performed using LS-DYNA-3D 

then the local thinning, wrinkling configuration, and thickness distribution of the parts were studied. 

Aluminum and steel sheets were formed in the experimental study. Turkoz et al. [7] have been studied 

hydromechanical deep drawings of magnesium sheets at high temperatures. Ozturk et al. [8] have 

been used the fuzzy control approach in finite element simulation to find optimal loading conditions 

in hydromechanical deep drawing. Liu et al. [9] have been studied the effect of process parameters 

on wrinkling in hydromechanical deep drawing. Lang et al. [10] have been used heated media to 

increase the formability of aluminum sheets. 

The most effective parameters on thinning in the HDD process for a specified drawing ratio are 

chamber pressure, pre-bulging pressure, pre-bulging height, and the distance between blank and 

blank-holder. The aim of this study is the analysis of the HDD process of square parts. The effect of 

pre-bulging pressure, friction coefficient, and blank thickness on thickness distribution would be 

investigated. Numerical results showed good adaption with experimental ones. 

 

2. Process Modeling 

Abaqus/CAE has been used to model the process tools and the forming process was simulated using 

Abaqus/Explicit. In the simulation, the effect of fluid pressure was modeled by applying pressure 

with uniform distribution. The changes of pressure are linear in the pre-bulging and forming stages 

(Figure 1). The material characteristics and process parameters used in the simulation are shown in 

Table 1. Die, punch, and blank-holder were modeled as a rigid surface. The friction coefficients 

between the blank and blank-holder ( h ) were 0.05, between the blank and punch ( p ) was 0.1, and 

between the blank and die ( d ) was 0.05 which were considered as coulomb’s friction law. The 

proper initial blank for deep drawing of the square section was applied on eight sides (Figure 2). The 

initial thickness of the blank was 1mm. The S4R element was used for meshing the blank. The whole 

blank contained 3621 nodes and 3500 elements. The drawing ratio was obtained by Equation 1. 

 

 
Figure 1: Chamber pressure in the forming step 
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Table 1: Material characteristics and process parameters 

Property (unit) value 

Material St12 

Thickness (mm) 1 

Yield stress (MPa) 294 

Ultimate stress(MPa) 401 

Density(g/cm3) 7.8 

Strength coefficient (MPa) 515 

Work hardening exponent 0.22 

Poisson ratio 0.3 

Yang module (GPa) 210 

Punch dimension (mm×mm) 150×150 

Punch radius (mm) 37.5 

Die dimension (mm×mm) 160×160 

Size of spacer between the blank and 

blank-holder (mm) 

1 

 

 
Figure 2: Initial blank shape 
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Where A0 is the area of the initial blank and Am is the average area of the punch section and die cavity. 

The height of the part (H) is calculated by Equation 2 considering that the volume of the sheet does 

not change in the forming process: 
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Where Af is the remaining area of the flange at the end of the process and Cm is the average perimeter 

of punch and die cavity. 

 

3. Experimental Setup 

An experimental setup of the HDD process was designed to verify the numerical results (Figure 3). 

The relief valve number 1 sets pre-bulging pressure while relief valve number 2 sets the chamber 

maximum pressure. At the pre-bulging stage, oil enters the chamber via pump 3, and chamber 

pressure would be increased. At the forming stage, the oil pressure would be increased severely by 

entering the punch into the die cavity. One-way valve prevents the reversion of oil and its discharge 

by the oil pump. After reaching the desired final limit of pressure, the operation continues at constant 

pressure. 
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Figure 3. Experimental setup 

 

The calculated diameters of blank and drawing height corresponding by different drawing ratios for 

square parts are shown in Table 2. Figure 4 displays the assembly of tools. 

 
Table 2: Blank dimension and drawing depth for different drawing ratios 

Z(mm) 
Drawing 

depth(mm) 
Drawing ratio 

67.61 

85.84 

111.23 

60.84 

98.11 

145.35 

1.75 

2 

2.25 

 

 
Fig. 4. Simulated tools 

 

4. Results and Discussion 

4.1 Effect of chamber pressure 

Various simulations were carried out in final chamber pressure (P) of 50, 100, 150, 200, and 250 Bar 

to determine the effect of chamber pressure on the maximum of thinning. In all states, pre-bulging 

pressure (Pi) was considered 20 Bar. As shown in Figure 5, for two different drawing ratios (LDR), 
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the maximum of thinning increased at higher pressure. But increasing the chamber pressure decreased 

the wrinkling in the flange zone. Wrinkling in the flange zone is shown in Figure 6. 

 

  
Figure 5 . Effect of chamber pressure on maximum of thinning (a) LDR= 1.75 (b) LDR= 2.25 

 

 
Figure 6. Wrinkling in the flange zone 

 

Thickness distribution in the bottom, wall, and flange of part is shown in Figure 7. The bottom zone 

has lower thinning than other zones. A maximum of thinning is observed in the wall zone.  

 
Figure 7. Thickness distribution of part in the bottom, wall, and flange 

 

4.2. Effect of pre-bulging pressure 

Keeping fixed the primary distance between punch and blank, various simulations were carried out 

to determine the effect of pre-bulging pressure on a maximum thinning. At lower pre-bulging 
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pressure, the blank doesn’t bulge and cannot reach to punch, therefore the thinning increased. On the 

other hand, at higher pre-bulging pressure, the blank is subjected to more extension. As shown in 

Figure 8, a minimum of thinning is obtained using pre-bulging pressure between 20 to 35 Bar. 

 

 
Figure 8. Thinning at various pre-bulging pressure 

 

4.3 Effect of pre-bulging height 

Pre-bulging height is the distance between the blank and punches before forming process. If the pre-

bulging height increase, more extension will be induced in the sheet. The effect of the pre-bulging 

height on thinning is shown in Figure 9. There is an optimum value of pre-bulging height for each set 

of chamber pressure and pre-bulging pressure. At pre-bulging pressure of 35 Bar, pre-bulging height 

less than 5 mm is not appropriate. On the other hand, pre-bulging heights more than 5mm have higher 

thinning. Therefore, 5 mm is the optimum pre-bulging height approximately. 

 

 
Figure 9. Effect of pre-bulging height on thinning 
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4.4 Comparison of numerical and experimental results 

Thickness distribution obtained from numerical results is compared with experimental data in Figure 

10(a). The thickness of the blank was 0.5 mm. as shown in Figure 10(a), there is good adaption 

between numerical and experimental results. The main reason for the small difference between 

numerical and experimental results is the error in friction coefficient applied in simulation. Octagon 

blanks prepared for various drawing ratios are shown in Figure 10(a). sound parts with different 

drawing ratios are shown in Figure 11. 

 

 
Figure 10. (a) comparison of numerical and experimental results (b) blanks for different drawing ratios 

 

 
Figure 11. Perfect Parts in various drawing ratios 

 

According to numerical results, in traditional deep drawing, failure occurs in the corner of the punch 

zone but in the HDD process, because of fluid pressure and friction force between sheet and punch 

wall, the probability of failure in the wall is more. Figure 12 shows a fracture in two traditional deep 

drawing and hydromechanical deep drawing processes. 

 

 
Figure 12. Failure in the parts; a) HDD and b) traditional deep drawing 
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5. Conclusion 

In this paper, the forming limit of square parts in the deep drawing process was analyzed using both 

numerical and experimental approaches, and the effect of the process parameters such as chamber 

pressure, per-bulging pressure, pre-bulging height was investigated. Based on the results, low pre-

bulging pressure led to more thinning in the wall of the part. There is an optimum pre-bulging height 

for each set of chamber pressure and pre-bulging pressure. 
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