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Abstract  
In this paper, the vibration behavior of the sandwich beams with functionally graded face-sheets is 

investigated based on the high order sandwich beam theory. The properties of the FGM are varied 

gradually across the thickness of the structures in accordant with the power-law rule. First-order 

shear deformation theory and polynomial patterns are used to model the displacements of the face-

sheets and the core, respectively. The governing equations of the motion are obtained based on 

Hamilton’s energy principle and solved by a Galerkin method. An algebraic method is used to 

reduce the number of equations. Boundary conditions are considered as simply supported and 

clamped. The effect of the power-law index and geometrical variations are surveyed on the 

fundamental frequency parameter for different sandwich beams in some numerical examples. In 

order to verify the results of the present study, they are compared with special cases of the 

literature. 
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1. Introduction 

Due to the high flexural stiffness to weight ratio, sandwich structures have a wide application in 

modern industries such as aerospace, transportation, naval, and construction structures. Sandwiches 

include two thin and stiff faces that cover a thick and lightweight core. The core is usually flexible. 

Separation of the face sheets by a softcore increases the bending rigidity of the beam at expenses of 

small weight [1].  

Application of the classical composite materials in high-temperature environments causes failure, 

delamination, and thermal stress concentration. Japanese researchers proposed the functionally 

graded materials (FGMs) to overcome this problem. FGMs are inhomogeneous microscopic 

materials that gradually graded from a metal surface to a ceramic one [2]. Investigation on these 

materials has been increased by material researchers. Rahmani et al. studied the buckling behavior 

of truncated conical sandwich shells with porous FG core. The materials were varied gradually in 

the thickness direction according to the power-law rule [3]. Rahmani et al. studied the vibration 

behavior of conical sandwich shells with both FG face sheets and FG core by using a power-law 

rule to model the material properties [4]. Fesharaki et al. studied the stress concentration factors in 

https://dorl.net/dor/20.1001.1.27170314.2020.9.2.5.9


Investigation of Parameters Affecting Surface Integrity and Material Removal during Electrical Discharge…, pp. 73 -84 

58 

FGM plate with central holes in different shapes [5]. Bouderba [6] studied the bending of FGM 

rectangular plates in the thermal condition. Properties varied in the thickness direction based on a 

power-law rule. Rahmani et al. [7] studied the buckling behavior of a conical sandwich shell with 

both porous FG face sheets and porous FG core. A power law rule was considered to model the 

material properties variation. 

There are different approaches to investigate the mechanical behavior of panels such as shear 

deformation theory, 3D elastic theory, energy, and finite element method [8]. Hu et al. studied the 

local and global buckling of sandwich beams by using a finite element method [9]. Vo et al. 

investigated the vibration and buckling of the FG sandwich beams by a finite element model based 

on the refined shear deformation theory [10]. Adamek investigated the possibilities of the first-order 

shear deformation theory (FSDT) to three-layered elastic beams. He studied their modifications on 

their transient responses to a pulse of impact character [11]. The core is a flexible layer that is 

compressed transversely and the thickness of the sandwich panels is variable, but in the classical 

theories, the localized effects in the core can’t be calculated. Frostig et al. presented a high order 

theory to consider the variation of the thickness [12]. Mohammadi and Rahmani studied the 

buckling behavior of FG sandwich cylinders based on the high order sandwich shell theory [13]. 

Rahmani et al. studied the free vibration of FG conical sandwich shells based on an improved high 

order sandwich shell theory [14]. Rahmani et al. [16] investigated the vibration behavior of the 

porous FG circular sandwich plate based on a modified high order sandwich plate theory [15]. 

Salami discussed the bending of sandwich beams based on an extended high order sandwich panel 

theory. Salami [17] also studied the low-velocity impact response of sandwich beams based on a 

high order theory. Dariushi and Sadighi [18] investigated the nonlinear behavior of the orthotropic 

sandwich beam based on a high order sandwich beam theory. Canales and Mantari studied the 

buckling and free vibration of laminated beams by using higher-order shear deformation theory 

[19]. 

Many researchers have explored the vibration behavior of the sandwich beams. Khalili et al. studied 

the vibration of sandwich beams by using a dynamic stiffness method [20]. Arikoglu and Ozkol 

investigated the vibration of composite sandwich beams with a viscoelastic core based on the 

differential transform method [21]. Amirani et al. studied the vibration of sandwich beams with FG 

core by using the element free Galerkin method [22]. Tossapanon and Wattanasakulpong studied 

the stability and free vibration of FG sandwich beams resting on an elastic foundation by using the 

Chebyshev collocation method [23]. Khedir and Aldraihem [24] investigated the vibration of a 

sandwich beam with a softcore based on a zig-zag beam theory. Goncalves et al. studied the 

buckling and vibration of shear-flexible sandwich beams by using a couple-stress-based finite 

element [25]. Zhang et al. presented a vibration analysis of sandwich beams with honeycomb-

corrugation hybrid cores [26]. Chen et al. studied the nonlinear free vibration of shear deformable 

sandwich beam with an FG porous core based on Timoshenko beam theory [27]. Xu et al. [28] 

studied the free vibration of a composite sandwich beam with graded corrugated lattice core based 

on a continuous homogeneous theory. 

In this study, the vibration behavior of sandwich beams is investigated by using a high order 

sandwich beam theory which is modified by considering the flexibility of the core in the thickness 

direction. Sandwiches consist of two FG faces that cover a homogeneous core. FGM properties are 
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location-dependent which graded in according to a power-law rule. Boundary conditions are 

clamped and simply supported. The equations are derived based on Hamilton's energy principle. To 

obtain the frequencies, a Galerkin method is applied. In order to validate the results of the present 

approach, they are compared with the results of the literature in special cases. Finally, the effects of 

the volume fraction distribution of FG face sheets and some geometrical effects on the vibration 

characteristics of defined sandwich beams are investigated. 

 

2. Formulation 

Consider a sandwich with the FG face sheets and a homogeneous core. Usually, it is considered that 

functionally graded materials are composed of metal and ceramic. Material properties are varied 

gradually across the thickness direction based on a power-law rule in terms of the volume fraction 

of the compositions. Material properties such as Young’s modulus, density, Poisson’s ratio can be 

expressed as: 

     1- , ( , )j j

j j j ce j mP z g z P g z P j t b   
   
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Where “P” is the material properties; “N” is the positive power-law index; “h” is the thickness; 

subscripts “m” and “ce” are metal and ceramic; and the superscript “t” and “b” are top and bottom 

face sheets, respectively. 

To model the displacement fields of the face-sheets, First Order Shear Deformation Theory (FSDT) 

is employed as follows [29]: 

   0 , ( , ), , j jj ju t jx z t u t bx z                                    
                                                                    (3) 

   0  , , ,j jw x z t w x t
 

                                                                    (4) 

where "0" denotes values with correspondence to the central plane of the layers; "u" and "w" are the 

in-plane deformation and the transverse deflections of the faces in the "x" and "z" directions, 

respectively. “Φ” is the rotation of the transverse normal line. 

Also, the kinematic relations of the core are considered as polynomial patterns with the unknown 

coefficients, uk (k= 0,1,2,3), for the in-plane and wl (l = 0,1,2) for vertical displacement components 

which obtained by the variational principle [18]: 
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                                                       (6) 

In this theory, the compatibility conditions assume that the faces are stuck to the core completely, 

and the interface displacements between the core and the face sheets can be obtained as follows: 

   / 2 / 2c c c t t tu z h u z h   
,  / 2c c c tw z h w  

 
(7) 
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(8) 

In order to investigate the vibration behavior of functionally graded sandwich beams and obtain the 

governing equations of the motion, Hamilton's energy principle is applied which consists of the 
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variation of the kinetic energy and strain energy. The main equation is as follow [29]: 
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The variation of kinetic and the strain energy are “δK” and “δU”, respectively; “t” is the time 

coordinate that varies between the times “t1” and “t2”; “δ” is the variation operator. The variation of 

the kinetic energy is calculated as follows: 
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Where (∙∙) indicates the second derivative with respect to time; the density is "ρ" which in the 

functionally graded layers is the function of the displacement; the core is indicated with "c".  

The variation of the total strain energy in the face sheets and the core, also the compatibility 

conditions at the interfaces of the layers which are the constraints and attended in the Hamilton’s 

principle in terms of Lagrange multipliers, is expressed as follows: 
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"σxx" and "τxz" display the normal and shear stresses; "εxx" and "γxz" are the normal and shear strains 

of the layers; "σzz
c" and "εzz

c" present the lateral normal stress and strain in the core; "τxz
c" and "γxz

c" 

declare the shear stresses and shear strains in the thickness direction of the core; "λx" and "λz" are 

the Lagrange multipliers at the face sheet-core interfaces. 

Considering small deflection, the strain components for the faces can be declared as follows [30]: 

     0 , ,, , , ,j

j jx jx x j xx z t u x t z x t  
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(13) 

The"(),i" expresses derivation with respect to i. The strain of the core can be defined as [30]: 
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In this model by substituting the expressions of the Equations 10 and 11 according to the kinematic 

relations of the layers and using the interfaces relations, and after some algebraic operations, the 

thirteen equations of motion are obtained. These equations are not independent and by using the 

compatibility conditions and based on a reduction method the number of equations is reduced to 

nine. These equations include two unknowns of the faces and seven unknowns of the core which are 

presented in the follows: 
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Stress resultants, moment resultants, inertia terms of the faces, and high order stress resultants of the 

core have been presented in Appendix 1. Finally, by substituting the high order stress resultants in 

the equations of the face sheets and the core in terms of the displacement components, the 

governing equations of motion are derived in terms of the nine unknowns. However, for a sandwich 

beam, Galerkin method solution can be established. 

 

3. Verification and Numerical Results 

In order to solve the equations of the free vibration of the FG sandwich beam, a Galerkin method 

with nine trigonometric shape functions, which satisfy the boundary conditions, is established. The 

shape functions of the simply supported boundary condition can be expressed as: 
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The shape functions of the clamped boundary condition can be expressed as: 
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Where /ma m L  ; m is the wave number and , ,uk wk jC C C
are the nine unknown constants of the 

shape functions. These nine equations can be written in a 9*9 matrix which includes the mass, “M”, 

and stiffness, “K”, matrices as follows: 
2( ) 0mm m mk M C   (38) 

Equation (38), m  is the natural frequency; and Cm is the Eigen vector which contains nine 

unknown constants.  

In order to validate the results of the present approach, they are compared with the results of works 
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of literature [10], [31] and [32] in a special case, which are shown in Table 1, for the simply 

supported (S-S) and clamped (C-C) boundary conditions. Consider different FG sandwich beams 

which are assumed to be made from a mixture of Alumina (Al2O3) as ceramic phases and 

Aluminum (Al) as metal phases. The mechanical properties of such materials are available in 

reference [23]. In general, ht-hc-hb sandwich beam is a structure with the indices of outer face sheet 

thickness, core thickness and inner face sheet thickness equal to ht, hc and hb, respectively. 

Therefore, in 2-1-2 sandwich, every face sheet thicknesses is two times of the core thickness and the 

structure is symmetric and in 1-8-1 sandwich, the core thickness is eight times of the every face 

sheet thickness. 

Some geometrical effects on the fundamental frequency of FG sandwich beams are investigated. 

Table 2 and Table 3 show the effect of length to thickness ratio on the fundamental frequency 

parameter for 2-1-2, 1-1-1 and 1-8-1 FG sandwich beams in the simply supported and clamped 

boundary conditions, respectively. 

 

Table1. Fundamental frequency parameters of present results and literatures [10], [31] and [32] (L/h=5) 

B.C reference N=0 N=0.5 N=1 N=2 

S-S 

[31] 5.1525 4.4083 3.9902 3.6344 

[10]  5.1526 4.3990 3.9711 3.6050 

[32]  5.1525 4.4075 3.9902 3.6344 

Present method 5.0789 4.3312 3.8618 3.5487 

C-C 

[31]  10.0344 8.7005 7.9253 7.2113 

[10]  9.9984 8.6717 7.9015 7.1901 

Present method 9.9151 8.5887 7.8080 7.1088 

 

For simplicity, the non-dimensional fundamental frequency parameter is defined as follows: 
2

0

0

L

h E


 

 
(39) 

Where "L" is the length of the sandwich beam; "h" is the total thickness of the sandwich beam; ρ0 is 

density equal to 1kg/m3 and E0 is the young module equal to 1 GPa. 

When ratios are increased in a constant “N”, the fundamental frequency parameter increase, but the 

natural frequencies decrease. Based on Tables 2 and 3, the values of 2-1-2 sandwiches are more 

than the others. The fundamental frequency parameters of the 1-8-1 are the lowest. By increasing of 

ratio, the stability of the structure reduces. It is important to consider that long length is not proper 

for the FG sandwich beams. By increasing the power-law index, “N”, the fundamental frequency 

parameters decrease. For example, in the simply supported boundary condition, for L/h=20, by 

increasing “N”, the fundamental frequency parameter decreases 13.42% in 1-8-1 sandwiches, 

37.63% in 2-1-2 sandwiches and 32.20% in 1-1-1 sandwiches. And for the clamped one, with the 

same parameters, the non-dimensional frequency decreases 9.98% in 1-8-1 sandwiches, 40.18% in 

2-1-2 sandwiches, and 33.12% in 1-1-1 sandwiches. Also, it should be noted that the values of the 

clamped sandwiches are more than simply supported ones. 

 

 

 



Investigation of Parameters Affecting Surface Integrity and Material Removal during Electrical Discharge…, pp. 73 -84 

64 

 

Table2. Fundamental frequency parameters of different kinds of simply supported FG sandwich beams 

  The fundamental frequency parameter 

 L/h N=0 N=0.5 N=1 N=4 

1-8-1 10 0.55214 0.52162 0.50640 0.47847 

 

20 0.55996 0.52880 0.51327 0.48479 

30 0.56145 0.53018 0.51458 0.48599 

40 0.56198 0.53066 0.51504 0.48642 

50 0.56222 0.53088 0.51525 0.48662 

2-1-2 10 0.86949 0.70332 0.64128 0.54203 

 

20 0.88139 0.71326 0.65042 0.54970 

30 0.88366 0.71516 0.65216 0.55116 

40 0.88446 0.71583 0.65278 0.55168 

50 0.88483 0.71614 0.65306 0.55191 

1-1-1 10 0.78224 0.66307 0.61373 0.53053 

 

20 0.79353 0.67265 0.62255 0.53797 

30 0.79569 0.67448 0.62423 0.53939 

40 0.79645 0.67513 0.62483 0.53989 

50 0.79680 0.67542 0.62510 0.54012 

 

Table3. Fundamental frequency parameters of different kinds of clamped FG sandwich beams 

  The fundamental frequency parameter  

 L/h N=0 N=0.5 N=1 N=4 

1-8-1 10 1.88035 1.79661 1.75690 1.68823 

 

20 3.64903 3.48983 3.41465 3.28531 

30 5.44098 5.20465 5.09313 4.90149 

40 7.23928 6.92534 6.77725 6.52285 

50 9.04018 8.64844 8.46366 8.14632 

2-1-2 10 2.90712 2.28712 2.06482 1.74266 

 

20 5.63357 4.42474 3.99217 3.36960 

30 8.39762 6.59337 5.94803 5.02055 

40 11.17194 8.77053 7.91171 6.67808 

50 13.95047 10.95117 9.87860 8.33832 

1-1-1 10 2.58753 2.15746 1.98843 1.73085 

 

20 5.00941 4.17334 3.84574 3.35024 

30 7.46564 6.21856 5.73023 4.99278 

40 9.93131 8.27185 7.62219 6.64167 

50 12.40084 10.32844 9.51722 8.29316 

 

Figures 1 and 2 depict the effect of the variation of the core to face sheet thickness ratio, hc/ht, on 

the fundamental frequency parameter in various power-law indices, and constant total thickness. 

When hc/ht=0.5, it means the thickness of the faces are two times of the core thickness, so it shows 

the results of the 2-1-2 sandwich. And, when hc/ht=8, it shows the results of the 1-8-1 sandwich. For 

all indices, by increasing the ratio in a constant total thickness, the number of metal increases and 

the structure will be softer, so the fundamental frequency parameters decrease. Also, when the 

power-law index is increased in a constant thickness, ceramic quantity decrease, and for all values 
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of hc/ht, by increasing the ratio, the fundamental frequency parameters decrease. 

 

 
Figure1. Effect of variation of the core to face sheets thickness ratio on the fundamental frequency parameter for 

simply supported FG sandwich beam 

 

 
Figure 2. Effect of variation of the core to face sheets thickness ratio on the fundamental frequency parameter for 

clamped FG sandwich beam 

 

Effect of the variation of the wave number, “m”, on the fundamental frequency parameter for 

various power law indices and constant total thickness is depicted in the Figure 3 and Table 4. By 

increasing the wave number, the fundamental frequency parameters increase.   
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Figure 3. Effect of variation of the wave number on the fundamental frequency parameter for clamped FG sandwich 

beam 

 

Table 4. Variation of the frequency parameter with wave number change for clamped sandwich beams 

  The fundamental frequency parameter  

 m N=0 N=0.2 N=1 N=2 

1-8-1 

1 3.64903 3.48983 3.41465 3.28531 

2 5.93308 5.60491 5.44926 5.18004 

3 6.98279 6.67958 6.53647 6.29046 

4 7.68987 7.35673 7.19962 6.92984 

5 7.62867 7.29839 7.14261 6.87504 

2-1-2 

1 5.63357 4.42474 3.99217 3.36960 

2 11.36682 8.86812 7.97068 6.67594 

3 10.77754 8.46289 7.63486 6.44457 

4 11.87949 9.32416 8.41042 7.09875 

5 11.77198 9.24104 8.33596 7.03633 

1-1-1 

1 5.00941 4.17334 3.84574 3.35024 

2 9.75776 8.04889 7.37556 6.35222 

3 9.58114 7.98151 7.35501 6.40865 

4 10.55677 8.79173 8.10088 7.05886 

5 10.46374 8.71535 8.03093 6.99831 

 

Effect of the variation of the total thickness of the sandwiches, “h”, on the fundamental frequency 

parameter in various power-law indices for different simply supported and clamped FG sandwich 

beams is depicted in Table 5 and Table 6. For example, in the simply supported boundary condition, 

for L/h=20 and N=1, by increasing h, the fundamental frequency parameter decreases 79.65% in 1-

8-1 sandwiches, 79.63% in 2-1-2 sandwiches and 79.62% in 1-1-1 sandwiches. And for the clamped 

one, with the same parameters, the non-dimensional frequency decreases 3.65% in 1-8-1 
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sandwiches, 4.31% in 2-1-2 sandwiches, and 4.27% in 1-1-1 sandwiches. It is seen that the rate of 

variation in both boundary conditions is constant in the different sandwiches. Also, the simply 

supported boundary condition is so sensitive via the variation of the total thickness than the 

clamped one. 

 

Table5. Variation of the frequency parameter with a total thickness of simply supported sandwich beams 

  The fundamental frequency parameter  

 h N=0 N=0.5 N=1 N=4 

1-8-1 

0.01 1.10429 1.04325 1.01280 0.95695 

0.02 0.55996 0.52880 0.51327 0.48479 

0.03 0.37430 0.35345 0.34305 0.32399 

0.04 0.28099 0.26533 0.25752 0.24321 

0.05 0.22489 0.21235 0.20610 0.19464 

2-1-2 

0.01 1.73899 1.40664 1.28256 1.08406 

0.02 0.88139 0.71326 0.65042 0.54970 

0.03 0.58911 0.47677 0.43477 0.36744 

0.04 0.44223 0.35791 0.32639 0.27584 

0.05 0.35393 0.28645 0.26122 0.22076 

1-1-1 

0.01 1.56449 1.32615 1.22747 1.06107 

0.02 0.79353 0.67265 0.62255 0.53797 

0.03 0.53046 0.44965 0.41615 0.35959 

0.04 0.39822 0.33756 0.312416 0.26994 

0.05 0.31872 0.27017 0.25004 0.21605 

 

 

Table 6. Variation of the frequency parameter with a total thickness of clamped sandwich beams 

  The fundamental frequency parameter  

 h N=0 N=0.5 N=1 N=4 

1-8-1 

0.01 3.76071 3.59323 3.51381 3.37647 

0.02 3.64903 3.48983 3.41465 3.28531 

0.03 3.62732 3.46977 3.39542 3.26766 

0.04 3.61964 3.46267 3.38862 3.26142 

0.05 3.61607 3.45937 3.38546 3.25852 

2-1-2 

0.01 5.81425 4.57425 4.12965 3.48532 

0.02 5.63357 4.42474 3.99217 3.36960 

0.03 5.59841 4.39558 3.96535 3.34703 

0.04 5.58597 4.38526 3.95585 3.33904 

0.05 5.58018 4.38046 3.95144 3.33533 

1-1-1 

0.01 5.17506 4.31492 3.97686 3.46170 

0.02 5.00941 4.17334 3.84574 3.35024 

0.03 4.97709 4.14570 3.82015 3.32852 

0.04 4.96565 4.135926 3.81109 3.32083 

0.05 4.96033 4.13137 3.80688 3.31726 

 
4. Conclusion 

In this study for three kinds of sandwich beams, 1-8-1, 2-1-2, and 1-1-1, according to a high order 
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sandwich beam theory, the displacement fields of the face-sheets and the core were considered 

based on the first-order shear deformation theory and the polynomial distributions, respectively. 

High order stress resultants were considered in the core. A power law distribution was used to 

model the material properties of the FG face sheets. The equations of the motion were obtained by 

Hamilton's principal and solved by using the Galerkin method. Also, an approach was used to 

reduce the equations of motion from 13 to 9 equations. In order to survey the capabilities of this 

model for free vibration analysis of simply supported and clamped sandwich beams with FG face 

sheets, the results were verified by literature results in a special case. Based on the results, there was 

a good agreement between them and the following conclusion can be drawn: 

 While the power-law index is increased, the amount of ceramic reduces, so the fundamental 

frequency parameter decreases. 

 In a constant power-law index, the fundamental frequency parameter increases when the 

length to thickness ratio is increased. 

 In a constant total thickness, by increasing the core to face-sheet thickness ratio in different 

power-law indices, the fundamental frequency parameters decrease. For example, in the value 

of hc/ht=0.5, 2-1-2 type, FG faces sandwiches due to the more quantity of ceramic have stiffer 

structure than the value of hc/ht=8, 1-8-1 type, so the fundamental frequency parameter in 2-1-

2 type is higher.  

 By increasing the wave number, the fundamental frequency parameter increases. 

 By increasing the total thickness of the sandwich beams, the fundamental frequency parameter 

decreases. The simple support boundary condition is more sensitive than the clamped one. 

 The values of the frequencies in the clamped boundary condition are more than simply 

supported boundary conditions.  

 

5. Appendix 1 

In the relations of the face sheets, The "N"s depict the stress resultants and the "M"s refer to the 

moment resultants which calculated as follows [23]: 
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The constant coefficients A1lj and A55j, B11j and D11j indicate the stretching, bending-stretching, 

and bending stiffnesses, respectively, which are obtained by: 
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(d) 

Where E ,   and   are Young's modulus, the Poisson’s ratio, and the thermal expansion 

coefficient, respectively, which in the functionally graded layers are the function of the 
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displacement. 

The inertia terms of the face sheets and the core are calculated as follows: 
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(f) 

The out-of-plane and in-plane stresses in the core leads to the high order resultants: 
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