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Abstract 

A comprehensive comparison between regressor-free control and direct adaptive fuzzy control of 

flexible-joint robots is addressed in this paper. In the proposed regressor-free controller, two critical 

practical situations are considered: the fact that robot actuators have limited voltages, and limitation 

on the number of measurement devices. However, in the article "decentralized direct adaptive fuzzy 

control for flexible-joint robots," these limitations have been neglected. It should be noted that a 

few solutions for the voltage-bounded robust tracking control of flexible joint robots have been 

proposed. In this paper; we contribute to this subject by presenting a new form of voltage-based 

controllers. The closed-loop control system stability is proved, and uniformly boundedness of the 

joint position errors is guaranteed. As a second contribution of this paper, we present a robust 

adaptive control scheme without the need for computation of the regressor matrix with the same 

result on the closed-loop system stability. Experimental results of the proposed controller and the 

decentralized direct adaptive fuzzy controller are produced using MATLAB/SIMULINK external 

mode control on a single-link flexible-joint electrically driven robot. Experimental and analytical 

results demonstrate the high performance of the proposed control scheme.  
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1. Introduction 

Flexible joint robots show some considerable advantages in comparison with their rigid 

counterparts. There are many robotics applications in which soft motions are required. An example 

of this is surgical robots that high-speed operation and better accuracy are demanded. However, the 

flexibility of the joints will make the end-effector position control difficult due to unwanted 

oscillations.  

In order to improve the controller performance, i.e., accuracy or suppression of residual vibration, 

many intelligent and neuro-fuzzy controllers have been proposed [1-6]. In the papers [2-3], neuro-

fuzzy controllers based on the assumed mode method have been applied to flexible-joint robots. A 

supervisory online fuzzy logic controller has been proposed in the research [4]. A neural controller 

for constrained flexible robots has been presented in [5]. Adaptive neural control of multi-link 

flexible joint robots in the task-space has been presented in the paper [6]. However, these 
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approaches [2-6] have excluded the actuator dynamics in their controller design. In other words, the 

torque applied to the robot joints is the controller outputs in these approaches. Thus, for successful 

real-time implementation, these controllers should be modified to calculate the voltage applied to 

electrical motors as the robotic system actuators. Moreover, it should be noted that neglecting the 

actuator dynamics can lead to inaccuracy in high-speed applications [7]. Thus, voltage-based 

controllers [1, 8-9] are preferable from a practical point of view. 

In [1], a robust control scheme for the flexible-joint electrically driven robot (FJEDR) in the 

presence of uncertainties associated with both motor and robot dynamics is shown. The proposed 

approach is related to the critical role of the electrical subsystem of the motors; thus, it is free from 

a mechanical subsystem of the actuator dynamics, considered here as unmodeled dynamics. As a 

result, the control design procedure is based on a third-order instead of the fifth-order dynamic 

model, considering actuator voltage input constraints. An extended form of this work has also been 

presented [8] that require motor current, motor position, motor velocity, joint position, joint 

velocity, and joint acceleration for control implementation. The advantage of these approaches is 

two-loop instead of the three-loop control structure, which makes them superior to others. 

Nevertheless, their measurement requirements are substantial.  

As an extension in the field of electrically flexible joint robots, [9] proposed a single-loop control 

strategy. Compared with the previous voltage-based control approaches; the proposed control is 

more uncomplicated. However, it does not consider the saturation nonlinearity in the stability 

analysis. Furthermore, there exist yet problems arise from Neural network/Fuzzy systems, as 

mentioned in [10]. 

In this paper, we are going to extend the results obtained by [9]. First, we improve the stability 

results of the proposed controller by considering the saturation nonlinearity and external 

disturbance. The overall closed-loop system composed of full nonlinear robot dynamics for n 

degrees of freedom and the proposed controller is proved to be stable. At the same time, joint 

position errors are uniformly bounded. As a second contribution of this paper, we present a robust 

adaptive control scheme without the need for computation of the regressor matrix. The proposed 

controller is an alternative to all previous voltage-based control strategies utilized for FJEDR. This 

novelty gives a simple, robust tracking control scheme for both structured and unstructured 

uncertainty based on the function approximation technique using the Fourier series expansion [11-

13]. 

This paper is organized as follows. In section 2, the model of an n-link flexible joint robot 

manipulator is described. In Section 3, a direct adaptive fuzzy controller (DAFC) proposed by [9] is 

reviewed, and its stability analysis is revisited.  In section 4, the robust adaptive control scheme is 

presented. In section 5, some experimental results are provided, and finally, some conclusions are 

offered in Section 6. Throughout this paper, we use the notation ( ) and ( ) to indicate the smallest 

and largest eigen values, respectively, of a positive definite bounded matrix. The norm of vector
 

ny
 
is defined as 

Ty y y  and that of matrix ( ) { ( ) ( )}TA A Ay y y . The vectors and 

matrices are bold for clarity. 
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2. Dynamics of Flexible Joint Electrically Driven Robot 

The dynamics in the joint space of a serial-chain n-link flexible-joint electrically driven robot can 

be described as 

( ) ( , ) ( ) ( )m   D q q C q q q g q K rθ q          (1) 

( )m m m m a   Jθ Bθ rK rθ q K I             (2) 

( ) ( )a a b m t t   RI LI K θ φ v           (3) 

Where
 

, , nq q q  are joint position, velocity, and acceleration, respectively,
 

( ) n nD q  is a 

symmetric, positive-definite function called inertia matrix, ( , ) n nC q q is a matrix function called 

centrifugal and Coriolis forces matrix, and ( ) ng q is the gravity vector.
 

, , n
m m m θ θ θ  are 

motor position, velocity, and acceleration, respectively. The constant positive-definite diagonal 

matrices n nK , 
n nJ , 

n nB , 
n nr ,

 

n n
m

K , 
n nL , 

n nR  and 

n n
b

K  represent the flexibility, the inertia, the damping constants, the gear-box ratio, the torque 

constant, the electrical inductance, the electrical resistance,  and the back-emf effects of the 

actuators, respectively.
 

n
a I  Is the armature current vector ( ) nt φ

 
 Represents the external 

disturbance and ( ) nt v  denotes the control input voltage applied for the joint actuators.  

 

3. Revisiting Considering Actuator Voltage input Constraint [9] 

The presented model given by Equations (1) to (3) is a fifth-order nonlinear and dynamically 

coupled multivariable system that makes the control problem extremely difficult. To tackle this 

problem, a decentralized robust tracking controller has been developed in [9] by employing voltage 

as a control input signal. Let us define: 

( )m  rθ q δ           (4) 

Where δ  represents the effect of joint flexibility. Combining Equations (2) and (4) gives 

m m m a  Jθ Bθ rKδ K I           (5) 

Using Equations (3), (4) and (5), a decoupled dynamic equation can then be written as [9]: 

+ + ( )a v tq K q μ K v           (6) 

Where 
-1 -1= ( + )a m bK J B K R K           (7) 

-1 -1
v mK rJ K R

 
         (8) 

And 
-1 2+ + + ( ( ))a v a t μ δ K δ J r Kδ K LI φ

 
         (9) 

In order to design a decentralized controller, assume that the dynamics of the ith joint can be 

represented by 

v( )a vq K q K t     

Where the presented variables q ,q ,  , and v( )t  are the ith element of the vector q ,q ,μ  and ( )tv , 

respectively. The coefficients aK
 
and vK  are also the ith element of the diagonal matrices aK  and 
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vK , respectively. 

For a practical situation, the actuator inputs are subjected to some constraints, called motor 

saturation limits. It occurs usually between the output of the controller and the PWM module [14]. 

For the development in this paper, we assume that the relation between the actual actuator input 

v( )t  and control signal produced by the controller u( )t  is given by 

v( )=sat(u( ))t t          (10) 

Where
 
sat(u( ))t 

 
is the saturation function. According to [14], the hard saturation function can 

be divided into a linear function u( )t  and a dead-zone function
 maxdzn(u( ), )t u . Thus, the control 

input applied to the system through the actuator is expressed as follows: 

maxsat(u( ))=u( ) dzn(u( ), )t t t u          (11) 

Now, substituting Equations (11) into (10), and using Equation (6), it follows that 

maxu( ) dzn(u( ), )a v vq K q K t K t u             (12) 

Remark 1: The control input given by Equation (10) indicates that the motor voltage is bounded, 

that is 

maxv( ) ut           (13) 

Where maxu  is a positive constant representing the maximum permitted voltage of the motor [14]. 

As a result, the variables aI , aI  and m  are upper bounded by 
I ,

 I
  and 

m
 , respectively. 

Following the same procedure, as described in [9], using Mamani type inference-engine, singleton-

fuzzifier and center-average defuzzifier, we propose a fuzzy controller in the form of 

T
1 2

ˆu( ) ( , )t x x y ψ          (14) 

Where
 

ŷ  is the estimation of y  used into the fuzzy system 
T

1 2( , )x xy ψ  which approximates the 

following function based on the universal approximation theorem of fuzzy systems as 

T 1
1 2 1( ) ( )v d d p ax K q k e k x k x K q       y ψ          (15) 

Where
 

( ) Nx ψ  denotes fuzzy basis function vector fixed by the designer, the number N

represents the number of fuzzy linguistic rules,   is reconstruction error of fuzzy logic system; dq  

is the desired joint position, 1k , dk  and pk  are positive scalar gains which are selected as control 

design parameters, 

1 1

0

( )

t

x e k e d             (16) 

2 1x e k e 
         (17) 

And e is tracking error expressed by 

de q q           (18) 

In order to obtain the adaptive control law, we form the tracking system from Equations (15), (16), 

and (18) as 
T

2 2 1 maxdzn(u( ), )d p v v vx k x k x K K K t u    y ψ          (19) 
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Where ˆy y y   The state-space equation in the tracking space is then obtained using Equation (19) 

as 

T
max( dzn(u( ), ))v v vK K K t u   X AX B y ψ          (20) 

Where 

1

2

0 1 0
,     ,     

1p d

x

k k x

    
            

A B X          (21) 

 

3.1 Stability Analysis 

Before starting the stability analysis, the following lemma is given. First, we present the following 

three assumptions, which are required in determining the sufficient conditions on the control 

parameters. 

Assumption 1: The desired trajectory and its time derivative are in L space ( , )d dq q L . 

Assumption 2: The external disturbance ( )t  is bounded as 

max( )t           (22) 

Where
 max  is a positive constant. 

Assumption 3: The reconstruction error  is bounded, i.e.
 c   with known c .  

Now, we are ready to present the following lemma. 

Lemma 1. dzn(u( ))t  is satisfied with the following condition: 

max
maxdzn(u( ), )

(1 )

u
t u







        (23) 

Where   is a constant, which always has a value smaller than 1.  

Proof : Suppose that u( )t  exists in the interval [ max{u( )},max{u( )}]t t  and   is maxmax 1
u( )

u

t

 
 

 
. 

Then,  

maxdzn(u( ), ) u( )t u t         (24) 

It is satisfied by Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure1. Linear bound of dead-zone function 
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This result, together with Equations (14), (15) and (24) gives 

 

 

T 1
max 2 2 1 max

1
max

dzn(u( ), ) dzn(u( ), )

dzn(u( ), )

v d p

v a

t u K x k x k x t u

K q K q t u

 

  





     

   

y ψ
        (25) 

 

Now, according to (14), (15), and (25), we have: 

max
maxdzn(u( ), )

(1 )

u
t u







         

It completes the proof■ 

Now, to carry out the stability analysis of the closed-loop system formed by dynamic Equation (10), 

the following positive definite function is proposed: 

1
( , )

2 2

T TvK
V


 X y X X y yP         (26) 

Where the constant 0  , P  and Q  are the unique symmetric, positive definite matrices satisfying 

the matrix Lyapunov equation  

T   A P PA Q         (27) 

By differentiating (26) along the trajectories of the uncertain system (19) and rearranging with some 

manipulation, it leads to 

max

1
( , ) dzn(u( ), )

2

ˆ

T T T
v v

T T Tv
v

V K K t u

K
K





   

 

X y X QX X PB X PB

y ψB PX y y

        (28) 

If the update law is given by 

ˆ Ty ψB PX         (29) 

Then, we have 

 
2

2 max

1
( , ) ( ) dzn(u( ), )

2
vV K t u    X y Q X P X         (30) 

Where 2P  is the second column of P . Now, according to Lemma 1 and assumption 3 we have 

2 max
2

1
( , ) ( )

2 (1 )
v c

u
V K


 



 
    

 
X y Q X P X         (31) 

Therefore, ( , )V X y is negative definite as long as X  is outside the compact set X  defined as 

2 max
2

( ) (1 )

v

c

K u
 

 

  
      

  
X

P
X X

Q
        (32) 

It means that X  and y  are bounded. According to the definition of 1x , and 2x , the linear equation 

1 2e k e x 
 

has the bounded input 2x , thereby e and e are bounded. Since de q q   and 

de q q  , thus boundedness of e , and e  follows boundedness of q , and q according to 

assumption 1. Extending this result to all motors implies the boundedness of system states q  and q . 

From Equation (2) we have 
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2 +m m m m a  Jθ Bθ r Kθ K I rq         (33) 

Since J , B  and 2
r K  are positive diagonal matrices, the second-order linear system expressed by 

Equation (33) is stable with the bounded input +m aK I rq , according to remark 1. As a result, the 

output is bounded. In summary, all system states are bounded. Thus, it is concluded that the 

proposed DAFC has guaranteed stability.  

Remark 2: The radius of the compact set X is related to the other parameters except for 

approximation error. 

 

4. The Robust Adaptive Control Scheme 

The presented approach given by [9] is straightforward. However, there exist yet problems 

originated from Neural Network/Fuzzy systems, as mentioned in [10]. As a second contribution, in 

this paper, a FAT-based robust control strategy is developed that eliminates the problem above. 

Toward this end, assume that Equation (12) for the i-th joint can be reformulated as 

( ) u( )q t t           (34) 

Where ( )t  is called residual uncertainty denoted by 

max( ) dzn(u( ), ) (1 )u( )a v vt K q K t u K t              (35) 

Remark 3: According to [9], the uncertain function which should be estimated can include the 

control signal u( )t .  

Before we go to the details of controller derivation, we present the following assumption. 

Assumption 4. A nonlinear function ( )t is assumed to be an unknown bounded function, and its 

variation bound is also assumed to be unavailable.  

As a result of Assumption 4, the traditional adaptive control scheme is not applicable. Under these 

circumstances, a simple control law is proposed as 

ˆu( ) ( ) ( ) ( )d d d p dt q q q q q t               (36) 

Where
 p  and

 d  are positive proportional and derivative scalar gains, respectively, and ˆ ( )t
 
is 

the estimate of ( )t . Substituting (36) into (34) gives 

ˆ( ) ( )d pe e e t t             (37) 

 

Where e  is the same as before. DefineΛ and Η  as 

 

0 1 0
   ,   

1p d

   
        

Λ H          (38) 

  

The error equation (37) can then be written in the following state-space form 

 

ˆ( ( ) ( ))t t   x Λx H  
        (39) 

 

Where 2[ ]Te e x  is the state vector. If an appropriate update law for ˆ ( )t can be designed, 
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so that ˆ ( ) ( )t t  ; then Equation (37) can give the desired performance. With this in mind, the 

function approximation technique will be used to represent ( )t as linear combinations of basic 

functions as 

( ) Tt     W Z          (40) 

Where
 


W  is weighting vector,  is the number of basis functions used, 

Z  is the 

vector of basis functions and is the approximation error of ( )t . Making use the same set of 

basis functions, we propose 

ˆˆ ( ) Tt    W Z          (41) 

Where
 

ˆ 
W  is the estimation of W . Now, substituting Equations (40) and (41) into (39) 

yields the closed-loop error dynamic as 

( ) ( ) Tt t     x Λx HW Z H          (42) 

Where
 

ˆ
   W W W  is the Fourier-series weights approximation error. Then, our main results 

can be formulated as the following theorem. 

Theorem 1: Given the system in Equation (42) and Assumptions 4, choose the FAT-based tracking 

control laws (37) and (39) with the number of basis functions for uncertainty approximation. Let 

the tuning laws with  -modification for the estimated vectors ˆ
W be as 

1ˆ ˆ( )T 
     W Q Z H Px W          (43) 

Where
 


Q  is a positive definite constant matrix and   is a positive number. By properly 

selecting the control gains, design parameters, and the sufficient number of basis functions, the 

tracking error ( )tx  and the weighting vector W  are uniformly ultimately bounded. 

Proof: Consider a positive definite function as 

( , ) T TV     x W x Px W Q W          (44) 

Differentiating Equation (43) concerning time, using (41) and (42), it can obtain that 

ˆ( , ) ( ) 2 2T T T TV         x W x Λ P PΛ x x PH W W          (45) 

Since Λ  is Hurwitz, one can arbitrarily choose a positive definite matrix Q  and let P  be the unique 

symmetric positive-definite matrix that satisfies the Lyapunov equation 
T   Λ P PΛ Q          (46) 

Equation (45) can be, therefore, rewritten as 

 22

min max

ˆ( , ) 2 2

( ) 2 ( ) 2

T T T

T

V  

   

    

    

   

    

x W x Qx x PH W W

Q x P x W W W
         (47) 

Result 1: Suppose a sufficient number of basis functions are used, and the approximation error can 

be ignored, then it is not necessary to include the  -modification terms in Equation (45). Hence, 

Equation (47) can be reduced to 
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2

min( , ) ( ) 0V    x W Q x          (48) 

And asymptotic convergence of x  can be concluded using the Barbalat's Lemma. 

Result 2: Owing to the existence of 
 
in Equation (47), it may be assumed the negative 

definiteness of V be guaranteed. In the following, we would like to investigate the system stability 

in the presence of reconstruction errors. It is effortless to prove the inequalities hold 
2

2 2 2max
min max min

min

2 22

2 ( )1
( ) 2 ( ) ( ) ,

2 ( )

1
( )

2

T


    


 

    

    

  

P
Q x P x Q x

Q

W W W W W

         (49) 

Using Equation (48), we obtain 
2

2 22 2max
min

min

2 ( )1
( , ) ( )

2 ( )
V


   


         

P
x W Q x W W

Q
         (50) 

Note that 
22

max max( , ) ( ) ( )V     x W P x Q W          (51) 

Then, Equation (51) can be further derived as 

2

max min

2
2 22max

max

min

1
( , ) ( ( ) ( ))

2

2 ( )
( ( ) )

( )

V V  


   





     

   

   

x W P Q x

P
Q W W

Q

         (52) 

Picking min

max max

( )
min ,

2 ( ) ( )




 





  
  

  

Q

P Q
, the second and third terms of Equation (52) becomes 

negative, and thus 
2

22max

min

2 ( )
( , )

( )
V V


  


      

P
x W W

Q
         (53) 

The last Equation is guaranteed to be negative as long as 

0

2
22max

min

2 ( )
sup ( )

( ) t t

V



 

 



 
 

 
P

W
Q

         (54) 

Hence, we have proved that ( , )x W is uniformly, ultimately bounded.■ 

 

4.1 Performance Evaluation 

The above derivation only demonstrates the boundedness of ( , )x W , but in practical applications, 

the transient performance is also of great importance. For further development, we may solve the 

differential inequality in Equation (51) to have the upper bound for ( , )V x W . 

0

0

2
2( ) 2max
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2 ( )
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t t
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V e V t
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  
 

  
P

x W W
Q

         (55) 

Using the inequality 
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22

min min( , ) ( ) ( )V     x W P x Q W          (56) 

We may find the upper bound for x  as 

0

0

( ) 2
0 max2

min min min
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( ) 2 ( )
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t t

t t
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e






 
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 
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


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P
x

P P Q

W
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         (57) 

It implies that the magnitude of the x  is bounded by an exponential function plus some constants. 

It also implies that by adjusting controller parameters, we may improve the output error 

convergence rate. As a consequence, 

0

2
max

min min min

2 ( )
lim sup ( )

( ) ( ) ( )t t t


 

  



 
  

 
P

x W
P Q P

         (58) 

With the same procedure as done for x , we can find the following upper bound for the weighting 

vector W .  

0

2
max

min min min

2 ( )
lim sup ( )

( ) ( ) ( )t t t
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

  
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 
P

W W
Q Q Q

         (59) 

The transient performance analysis is then completed.■ 

 

5. Experimental Results 

The laboratory set up which has been considered for the experimental study is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2. Experimental setup 

 

It is a single-link flexible joint manipulator. The joint consists of two aluminum plates joined by 

polyurethane material to possess high flexibility. The actuator is a geared permanent magnet DC 

motor, operating within ±12 volt input, directly driving one plate. A steel tube is connected to the 
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second plate. Two potentiometers provide feedback of the motor and joint positions, while velocity 

information is obtained by filtering the position feedback data [15]. In order to control the system 

using a PC, a PCL-818 I/O card and a PCLD-8115D data acquisition card of the Advantech 

Company are used for hardware interfacing. The "Real-Time Workshop" facilities of the MATLAB 

SIMULINK are used for the user interface. A block diagram of the system is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure3. Block diagram of the system 

 

To explore the controllers' ability, the performance of the proposed control methods (Equations 

(39), (43) and (45)) is compared with direct adaptive fuzzy control given by [9]. The desired 

trajectory ( )dq t  used in all experiments is given by 

2
( ) 1.26 0.63sin( )

5
dq t t


         (60) 

The following gains are used for each controller.  

1) For DAFC given by [9], 0.5  , and 2  . Three membership functions are given to the fuzzy 

variables q and q in the operating range of the system. Thus, the whole space is covered by 9 fuzzy 

rules. The membership functions are chosen the same as [9], and the fuzzy linguistic rules are 

proposed in the form of Mamdani, as mentioned in [9]. 

2) The proposed approach: 150p  , 24.45d  . The five first terms of Fourier series as the basis 

functions for the approximation are used in (40). Therefore, ˆ
W  is in 5 . The initial weighting 

vector for the entries is assigned to zero, and the gain matrix in the update law (42) is selected as

550I Q , where ( )I is the identity matrix. 

Under these settings, experimental results in the absence of external disturbance were presented in 

Figures 4-7. Figure 4 shows the desired and actual joint angular positions. 
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Figure4. Output tracking performance 

 

Joint position errors are shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5. Joint position errors 

 

The applied voltages are shown in Figure 6.  
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Figure6. Control signal 

 

Finally, Figure 7 shows the time evolution of the approximation of ˆ ( )t .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7. Approximation of ˆ ( )t  

 

As can be seen, all controllers approximately have the same result in the tracking of the desired 

trajectory in the absence of external disturbances.  

To test the performance robustness of the controllers to external disturbances, a unit step 

disturbance with amplitude 60 volt is added to the system at t=15sec. The results of the 
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implementation of DAFC [9], and the proposed control scheme, are illustrated in Figures 8-11, 

which show the output tracking performance, the absolute value of joint position error, the time 

evolution of the applied voltage, and approximation of ˆ ( )t , respectively. As can be seen, more 

accuracy is obtained with the proposed control scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure8. Output tracking performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure9. Joint position errors 
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Figure10. Control signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure11. Approximation of ˆ ( )t  

 

As further work, the experimental results are also measured in terms of several performance indexes 

quantitatively [15]. The time interval 15 30t  has been selected to compute these indexes in 

order to avoid transient effects. The results for each one are given in Table 1.  
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Table1. Performance of four controllers 

Index Unit DAFC 
Proposed 

Approach 

15 30
max { ( )}

t
e t

 
 (rad) 2.9485 0.4089 

[ ( )]RMS e t  (rad) 0.902 0.09653 

 

The first index corresponds to the maximum absolute value of the tracking error defined as 

15 30
max { ( )}

t
e t

 
. The best performance for this index was obtained with the proposed control scheme. 

The improvement for the joint is %86.13concerningthe DAFC controller. 

In order to average stochastic effects, the RMS (Root Mean Score) value of the joint position error 

has also been computed on a trip of time T , that is 

2

0

1
[ ( )] ( )

T

RMS e t e d
T

  
 

      (61) 

In practice, the discrete implementation of the criterion Equation (61) leads to 

2

0

1
[ ( )] ( )     rad

i

RMS e t e h h
T 




 
 

      (62) 

Where 10h   msec is the sampling period,   is the discrete-time and 15secT  . The best 

performance index was obtained with the proposed controller because it presented the smallest 

value of [ ( )]RMS e t , 89.3%, concerning the DAFC controller. 

 

6. Conclusion 

This paper presents a robust adaptive control scheme for flexible joint electrically driven robots 

considering uncertainties in both actuator and manipulator dynamics. The controller design is not 

dependent on the mechanical dynamics of the actuators and manipulators. Thus, it is free from 

problems associated with the torque control strategy in the design and implementation. It is shown 

that the closed-loop system has guaranteed stability while obtains uniformly stability of the joint 

position error. Experimental results show that tracking performance is satisfactory such that the 

effects of joint flexibility are well under control. The performance of the control system verifies that 

the control system is robust against all uncertainties in the manipulator dynamics and its motors. 

The voltages of motors are permitted under the maximum values. 
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