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1. INTRODUCTION 

Since 1950, network science has become a living and interdisciplinary field. Today, networks play an important role 

for research in various fields, including social sciences, economics and psychology, biology, physics and mathematics 

[1,2] and as a forward-looking concept, it is used to describe the interactions of many systems. Several network models 

have been developed that have statistical properties consistent with real-world networks. In particular, we can mention 

random networks or René camp, small world network in network science. 

Real-world networks such as brain networks, electrical networks, etc. [3] are characterized by a high clustering 

coefficient. Also, despite the large size, there is often a relatively short path between both nodes. Strugats presented a 

model with small-world network [3] that exhibits both features, small shortest path length and high clustering factor. 

These features are known as the small world feature, which consists of a regular network and is rewired with the 

probability 𝑝 of edges, which is from 0.005 to 0.05 and is between the regular network (𝑝 = 0) and the random network 

(𝑝 = 1).  

One of the main topics of network dynamics is synchronization [4,5]. Synchronization can be seen in many different 

contexts. In computer science, such as synchronization has been used to extract data in a large database [6]. Other 

applications in engineering where synchronization or asynchrony are important, such as wireless communication 

networks [7] and electric networks [8]. 

By simulating his model, Winfrey [9] found that spontaneous synchronization appears as a threshold process, a 

phenomenon similar to phase transition, and in his studies and Kuramoto [10], it is stated that the start of synchronization 
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in Oscillating populations represent phase transitions; Below the transition point, the individual movement of oscillators 

in a group is uncorrelated. As their interactions become stronger, the connections between the dynamic modes of the 

oscillators in one part of the set are established and the frequencies of these oscillators become the same. Near the 

transition point, the size of the coherent oscillator group is small, but the group grows and the number of interacting 

oscillators increases. The size of this group can be chosen as a synchronization parameter. 

Based on Winfrey's method, The Kuramoto model consists of a population of phase oscillators whose interaction is 

determined by differential equations [11,12] and expresses the rotation of oscillators with heterogeneous natural 

frequency that are coupled in the form of phase difference sinusoids. 

The paper is organized as follows. In Sect. II, we define the model and the numerical methods of quantifying the 

synchronization. Sect. III represents the results and discussion and sect. IV is devoted to the concluding remarks. 

 

2. MODEL AND METHOD 

We used the Kuramoto model in a network with N oscillators at the nodes of the network, which include two groups. 

One group (excitatory oscillators) has positive coupling and tries to be in phase with its neighbor, and another group 

(inhibitory oscillators) tries to be in the opposite phase (π) with it. 

      Therefore, in the Kuramoto equations: 

 
𝑑𝜃𝑖

𝑠

𝑑𝑡
= 𝜔0 +

1

𝑘𝑖
∑ 𝑎𝑖𝑗𝜆𝑗

𝑠𝑁
𝑗=1 sin(𝜃𝑗 − 𝜃𝑖

𝑠),              (1) 

  𝑖 = 1, … , 𝑁  
 

     In this equation, 𝜃𝑖 is the phase of the 𝑖th oscillator, 𝜔0 is the intrinsic frequency of the oscillators, which are equal 

and zero without losing any generality. 𝑎𝑖𝑗  are the elements of the adjacency matrix, where 𝑎𝑖𝑗 = 1, if oscillator 𝑖 and 𝑗 

are connected, otherwise 𝑎𝑖𝑗 = 0, and  𝑘𝑖  is the degree of node 𝑖th. 𝜆𝑖
𝑠 is the coupling constant of the 𝑖th oscillator (𝑠 

indicates excitatory and inhibitory) which 𝜆𝑗
𝑒𝑥𝑐𝑖𝑡  is positive if the oscillator is excitatory and 𝜆𝑗

𝑖𝑛ℎ𝑖𝑏  is negative if the 

oscillator is inhibitory. Assuming 𝑄 > 0 and 𝜆𝑗
𝑒𝑥𝑐𝑖𝑡 , we will have: 𝜆𝑖

𝑖𝑛ℎ𝑖𝑏 = −𝑄𝜆𝑖
𝑒𝑥𝑐𝑖𝑡, also 𝜏 = 𝜆𝑖

𝑓
𝑡. 

We determine the degree of synchronization of all oscillators in each time interval by the order parameter: 

 

r(𝜏) =
1

𝑁
∑ 𝑒𝑖𝜃𝑗(𝜏)     𝑁

𝑗=1                                           (2) 

 

we define the longtime averaged order parameter in the stationary state as: 
 

𝑟∞ = 𝑙𝑖𝑚
∆𝜏→∞

1

∆𝜏
∫ 𝑟(𝜏)𝑑𝜏

𝜏𝑠 +∆𝜏

𝜏𝑠
                                       (3) 

 

     in which 𝜏𝑠 is the time of reaching a stationary state.  

 

 
Fig. 1. (Color online) Stationary order parameters verses fraction of inhibitory oscillators for the excitatory-inhibitory 

model for Q=0.5,Q=1 and Q=1.5 for small world (with the probability of rewiring 0.03) networks of N=1000 

oscillators and mean degree 〈k〉=10. The error bars indicate the standard error of mean (SEM). 
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3. RESULTS AND DISCUSSION 

We considered the model for a small world network with 1000 nodes and an average degree of 10. Note that all 

edges are bidirectionally selected and we denote the ratio of inhibitory oscillators to excitatory oscillators by 𝑝. To 

obtain the time evolution of the oscillators, we used the fourth-order Rangkota method with a time step  

of 0.1 and considered the initial phase of the oscillators from the box diagram in the interval [𝜋, -𝜋], and the  

natural frequency distribution of the oscillators follows the Lorentz distribution function.  

We obtained the average order parameter for 150 runs for the small world network and different initial conditions 

and 30 runs for 10 different networks and different initial conditions. ∽8×105time step calculations have been done and 

from this number, 1000 final steps have been kept and averaged. In the calculations, it can be seen that the time step of 

the network is about ∽6x105 and reaches a stable state. 

As it is thought, the power of coupling of inhibition and excitation oscillators can be effective in the order parameter 

and thus network synchronization by increasing the number of inhibition oscillators in the network up to a certain 

percentage. In Fig. 1, three states are considered for 𝑄: 𝑄 < 1, 𝑄 = 1, 𝑄 > 1. By setting γ=0 in the model, the order 

parameter is drawn in terms of p. For all three modes, the initial phase of the oscillators is the same. With the increase 

of inhibitory nodes in the network, the order parameter increases and then decreases, and the higher the coupling strength 

of the nodes, the faster this decrease and the resistance of the network for synchronization is lower. This turning point 

depends on the value of 𝑄 and decreases with increasing 𝑄. 

It can also be seen in Fig. 1 when there is no inhibitory oscillator in the network, the network has not reached full 

synchronization and what is shown in this figure is the average of 10 initial conditions. By increasing the inhibited 

oscillators in the small world network in a certain range, not only the order parameter does not decrease, but the order 

parameter increases up to a certain percentage of the inhibited oscillators. 

For a better review, the correlation matrix for 𝑄 = 0.5  is drawn in Fig. 2. In this Figure, it can be seen that network 

defects are seen for percentages of the inhibited oscillator which is the maximum order parameter. At first, when the 

percentage of inhibited oscillators in the network increases from zero, the network defects decrease and in fact the 

network becomes more regular. Then, with the increase of inhibitory oscillators, network defects increased and for 

higher percentages (for network with 𝑄 = 0.5  , for 𝑝 > 0.18, for network with 𝑄 = 1, for 𝑝 > 0.1 and for network 

with 𝑄 = 3, for 𝑝 > 0.03) disappears. In fact, around the maximum order parameter, the oscillators are divided into two 

groups that are in opposite phase (π). 

 

 
(a)                                                  (b)                                                     (c) 

Fig. 2. (Color online) correlation matrix of inhibitory and excitatory oscillators   for (a) p 0.03,(b)p=0.09 and 

(c)p=0.18 in a small world network of N=1000 oscillators, mean degree 〈k〉=10 and Q=0.5. 𝑝 is the fraction of 

inhibitory to excitatory oscillators. 

 

With the investigation, we came to the conclusion that the group of oscillators that are in opposite phase with other 

oscillators and cause network defects, are not only inhibited oscillators and include both inhibited and excited oscillators. 

The presence of a small percentage of the inhibited oscillator causes a number of oscillators to be in opposite phase with 

the rest of the oscillators and even for a certain percentage, they create a higher order in the network. 

The phase density of the oscillators after the network reached a stable state, separately (inhibitory and excitatory) is 

drawn in Fig. 3 for Q=0.5 in the small world network for the percentages presented respectively in Fig. 2. As can be 

seen in these figures, for the percentage of inhibition oscillators that we observed network defects, the phase density 

diagrams of inhibition and excitation oscillators are in phase. 
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(a)                                                     (b)                                                  (c) 

Fig. 3. (Color online) The probability density function of the phase of inhibitory and excitatory oscillators for (a) p= 

0.03,(b)p=0.09 and (c)p=0.18 in a small world network of N=1000 oscillators, mean degree 〈k〉=10 and Q=0.5. p is the 

fraction of inhibitory to excitatory oscillators. 

 

4.   CONCLUSION 

In summary, By using the Kuramato model in the small world network and defining inhibitory and excitatory 

oscillators, we found that the excitatory and inhibitory oscillators are always in phase. We also observed an increase in 

synchrony by increasing the fraction of inhibitors in the SW network, where the number of inhibitory oscillators to 

maximize synchrony depends on the coupling strength of the oscillators. 
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