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ABSTRACT: 

Distributed Denial of Service (DDoS) attacks are a significant threat, especially for the Internet of Things (IoT). One 

approach that is practically used to protect the network against DDoS attacks is the honeypot. This study proposes a 

new adversarial Deep Reinforcement Learning (DRL) model that can deliver better performance using experiences 

gained from the environment. Further regulation of the agent's behavior is made with an adversarial goal. In such an 

environment, an attempt is made to increase the difficulty level of predictions deliberately. In this technique, the 

simulated environment acts as a second agent against the primary environment. To evaluate the performance of the 

proposed method, we compare it with two well-known types of DDoS attacks, including NetBIOS and LDAP. Our 

modeling overcomes the previous models in terms of weight accuracy criteria (> 0.98) and F-score (> 0.97). The 

proposed adversarial RL model can be especially suitable for highly unbalanced datasets. Another advantage of our 

modeling is that there is no need to segregate the reward function. 
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1.  INTRODUCTION 

Distributed Denial of Service (DDoS) attacks cause 

flood traffic from multiple sources to selected nodes and 

impede the flow of legal information across a network 

[1]. They are still a significant threat, especially to the 

Internet of Things (IoT). If the victim node is a server 

that needs to process information quickly, the entire 

network operation will be stopped. One approach 

practically used to protect the network against DDoS 

attacks is the honeypot [2]. The goal is to examine a 

potential attacker's behavior by analyzing it. In this way, 

we can strengthen the primary system based on the 

patterns learned by the honeypot so that it is less 

vulnerable to similar attacks in the future. The first line 

of defense is to detect DDoS attacks. Then, attack flows 

can be identified and labeled in real-time in the second 

line of defense. 

Recently, the importance of Intrusion Detection 

Systems (IDSs) has been highlighted due to their 

economic gain to organizations [3, 4]. Recently, the 

attention of Machine Learning (ML) researchers has 

been focused on the use of IDS as a Decision Support 

System (DSS) [5]. In this regard, it is tried to design 

IDSs with the lowest detection error and high prediction 

speed. Security and privacy concerns are increasingly 

disrupting access to operational data. Using suitable ML 

methods for Honeypot systems can speed up the 

detection of attacks. While existing technologies can 

effectively support Honeypot, they lack comprehensive 

activity validation. Unfortunately, one of the most 

critical weaknesses of ML-based honeypots is that they 

cannot detect network changes effectively. Another 

major challenge in designing IDSs is the issue of feature 

extraction and preprocessing [6, 7, 8]. In other words, 

associating features and intrusion labels is not an easy 

task at all. The actual penetration mode is challenging. 

For this reason, in almost all studies in this field, 

supervised learning methods are used for feature 

generation [9, 10]. 

Reinforcement Learning (RL) methods are powerful 

tools for improving the learning of supervised learning 

methods [11, 12]. The application of Deep 

Reinforcement Learning (DRL) [13, 14] has grown 

dramatically. The main distinguishing feature of RL 

methods is the use of experiences gained from the 

environment over time [15]. This is precisely the way 

humans and animals learn. The environment takes 

action from the agent and returns new modes and 
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rewards [16]. Then, based on the acquired states and 

rewards, the algorithm optimizes the agent’s policy 

function. The agent uses the policy function to calculate 

the following best action based on the current state and 

the rewards provided by the environment [17]. 

Most of the studies conducted so far on IDSs have 

been using ML techniques. Among these, the most 

considerable contribution of studies is for classical ML 

techniques [16, 18, 19, 20]. Also, several studies have 

been conducted to evaluate ML methods, such as RL 

[11, 12] and DRL [3, 21]. Some recent research has 

used the manipulation of specific models of ML, called 

adversarial machine learning [16, 22, 23, 24]. The most 

important feature of this type of study is injecting 

insufficient data into the ML algorithm to fail the 

classification model. Each of these studies has been 

modeled differently. The most significant differences 

are the design of the states, actions, and reward 

functions. Thanks to powerful reward functions, DRL is 

very suitable for online training and can quickly respond 

to changes in network conditions. 

This paper proposes a high-accuracy DRL model 

combining simulated and real-world environments. If 

the agent's prediction is correct, it will be given a 

positive reward from the environment. We define the 

objective function as equal to the reward of the 

environment. The goal is to maximize the objective 

function. The main strength of the proposed modeling is 

that it randomly extracts new samples (states) from the 

pre-registered sample dataset. The proposed system, 

using the experiences gained from the environment, can 

produce better results contrary to the policy of the 

adversarial agent. If the classifier's mispredictions 

increase, then environmental behavior actively reduces 

the rewards given to the agent. This way, the agent is 

forced to learn the most complex cases. Our primary 

motivation in this research is to design two-way 

honeypots using the RL approach. It allows two-way 

honeypot surveillance of internal/external attackers. 

These honeypot devices can be used in industrial LANs 

in the cyber-physical IoT. It can be a legal way to 

provide different types of data to domestic and foreign 

consumers. The proposed RL-based system can 

strengthen the security of honeypots against all kinds of 

attacks. It detects internal/external attacks through 

multilevel RL techniques. In the proposed method, the 

event management technique is based on the safe 

distribution of toxins. The system develops DQ, 

Adversarial Environment  (AE), and RL modules for 

successful attack detection at runtime. 

We used the CICDDoS2019 (Knowledge Data 

Discovery) Database [25, 26] from the Canadian 

Institute for Cyber Security in previous research. This 

dataset contains attacks that may compromise IDS 

security and make it suitable for analysis. To evaluate 

the performance of the proposed method, we compare it 

to two categories of DDoS attacks, including NetBIOS 

and LDAP. NetBIOS stands for Network Basic 

Input/Output System [27]. Its primary purpose is to 

allow applications in a LAN to communicate and create 

sessions to access shared resources. Also, LDAP stands 

for Lightweight Directory Access Protocol [28]. It is an 

industrial protocol for controlling distributed directory 

information on a network. 

The most important contributions of this paper are as 

follows: 

• We introduce a hybrid architecture of supervised 

and RL models to predict attack patterns. It can 

be generalized to almost all other types of 

industrial networks. The proposed model using 

adversarial RL can be especially suitable for 

highly unbalanced datasets because samples 

matched with incorrect classification labels are 

often used for training. 

• We show through experimentation that the 

proposed new model has a higher prediction 

accuracy than nonlinear models and, at the same 

time, requires much less prediction time.  

• The next step is to generate a data packet for 

testing and transmit it to the "patient." The tester 

package is identical to any other data package. 

However, since its contents are obscured and 

filled with a random data stream, the victim may 

not deduce that it came from the honeypot. 

In the rest of this paper, we have a complete study of 

the previous studies in Section 2; Section 3 presents the 

formulation of the problem; Section 4 presents the 

experiments to evaluate the modeling. Finally, in 

Section 5, the conclusion is presented. 

 

2.  RELATED WORK 

Most of the studies that have been done so far on 

intrusion detection systems have focused on ML 

methods. Since the scope of this paper is reinforcement 

learning, our primary focus is on reviewing these types 

of studies. A review of the literature shows that much of 

previous research has focused on improving the 

performance of methods. Most of the research has 

included comparing the performance of the proposed 

strategies with other Machine Learning (ML) 

approaches. Also, numerous studies have been 

conducted to evaluate ML methods such as Deep 

Reinforcement Learning (DRL) [3, 21]. 

Pashaei et al. [20] used SARSA based Markov 

Decision Process (MDP) reinforcing learning method to 

identify attacks. They compared the DRL-based strategy 

with a conventional scheduling-based plan. This 

evaluation was done considering learning periods, 

implementation time, and rewards. 

In another study, Holgado et al. [18] proposed an 

ML technique for detecting multi-stage attacks that use 

a Hidden Markov Model (HMM) to predict the 
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attacker's following action. In [19], a comprehensive 

study of DRL cybersecurity capabilities is conducted, 

including real-time traces and simulations. They 

focused on mastering adversarial reinforcement learning 

techniques and, at the same time, examining the effect 

of multi-agent DRL models on intrusion detection 

systems. Al-Amin et al. [29] proposed an online 

deception technique that includes various scenarios. In 

these scenarios, defending activities dynamically affect 

attacking plans and tactics. Defender actions are 

modeled as a Partially Observable Markov Chain 

(POMDP). This RL model monitors the defender's 

belief in the attacker's progress. As a result, the defender 

distracts the attacker from the decoy nodes.  

Alavizadeh et al. [5] proposed a DRL model to 

identify and classify different types of network intrusion 

attacks. Their proposed model uses a labeled dataset as 

input. It can learn automatically by leveraging trial and 

error techniques. The most critical weakness of their 

method is how the MDP adapts to the environment. 

Unfortunately, this study does not explain how to adapt 

to the environment. Therefore, it is impossible to make 

a clear judgment about the learning rate of the proposed 

method based on environmental experiences. This, in 

turn, obscures the system's accuracy in detecting 

network attacks.  

Some studies [11, 12] have used a combination of 

reinforcement learning (RL) and game theory. In 

addition, machine learning may be used to examine 

players 'beliefs to develop a strategy and competitors' 

beliefs to predict their movements. [30] provides a 

context-based intrusion detection system that uses a 

distributed network of independent DRL agents to 

improve detection accuracy for threats. They use the 

NSL-KDD, UNSWNB15, and AWID datasets to 

achieve greater accuracy and lower the false-positive 

rate (FPR). Another study [31] used RL as a sensor 

network analysis engine and IDS. Combining adaptive 

machine learning with clustered IDS results in higher 

accuracy and better recall rates.  

It is possible to manipulate specific models of ML. 

This is called adversarial machine learning. It is a 

malicious attempt to enter insufficient data into the ML 

algorithm to cause the classification model to fail. 

Adversarial is often used in two ways: poisoning the 

environment and avoidance. The first goal is 

manipulating the training data to produce the wrong 

classification decision. On the other hand, the second 

technique assumes that the model is already trained and 

tries to correct its behavior to make incorrect 

predictions. Numerous studies have examined the effect 

of poor learning problems on NIDS [24].  

In other studies, RL has been used to detect 

anomalies. Caminero et al. [22] advised a multi-agent 

RL system. Their proposed model has higher accuracy 

and F-score than the famous ML algorithms. 

Suwannalai et al. [23] presented multi-agent RL with 

DRL.  

Adversarial reinforcement learning [22] is a type of 

RL that combines environmental learning with an 

adaptive RL algorithm. Establishing a reliable reward 

mechanism is of great importance. The SMOTE [16] is 

a machine learning technique that solves problems using 

an unbalanced dataset. Unbalanced datasets often occur 

in practice and need to be controlled. They solve this 

problem by developing an adversarial RL with SMOTE 

leverage. This research was performed on the NSL-

KDD dataset and showed a remarkable superiority over 

previous DRL methods. Unfortunately, this technique 

cannot distinguish unknown classes with high accuracy 

only by relying on positive samples. The authors in [32] 

modified the sampling function of the instruction data. 

This method provides incentives to detect errors during 

training by sampling the training data. The proposed 

technique performs best when the DDQN algorithm is 

used. It leads to an excellent F-score in AWID and 

NSL-KDD datasets. 

In [33], an optimal strategy for deceptive resources 

was achieved by leveraging an attacker-defender game. 

In [4], DRL combined with ML is used to detect DoS 

attacks on the server side. The main weakness of the 

proposed method is that it can only be used for single 

DoS attack detection. Dowling et al. [34] conducted 

another study on deploying a honeypot using the RL. 

One of the significant drawbacks of this study is that it 

uses only the SSH protocol and does not support 

interaction-level samples.  

So far, several RL strategies have been used for 

Intrusion Detection Systems (IDSs), which aim to 

improve accuracy. Unfortunately, in this research, few 

explanations are provided regarding the formulation of 

RL or the precise setting of the above parameters. They 

also do not explain learning and interacting with the 

infrastructure network environment. Contrary to the 

above research, in this article, we provide a complete 

formulation of development and implementation for the 

next Honeypot iteration based on the DRL technique. 

The data gained from these studies was very beneficial 

in building the proposed EIDS- AERL system. 

Adversarial Environment Reinforcement Learning 

(AERL) based Honeypot was used as a substitute 

strategy for standard EIDS techniques in the suggested 

method. AERL learns by interacting with two agents 

and obtaining a reward function. However, AERL 

performs better in the unbalanced domain. 

 

3.  PROPOSED METHOD 

This study aims to develop a new multi-agent 

adversarial RL strategy based on the SARSA deep 

algorithm [17]  to improve the classification of different 

types of minority attacks. As mentioned earlier, these 

tests run on the CICDDoS2019 dataset [25, 26]. This 
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research enhances the approach of [35] and makes 

essential modifications to it that lead to improved 

performance. Readers interested in studying AE can 

refer to [22]. Details of the original AE-DQN can also 

be found in [23]. The generalities of the RL algorithm 

are also found in [36]. 

 We use Q-learning in the family of Finite Markov 

Decision Process (FMDP) approaches to model the 

environment. Here, "Q" refers to the function that the 

algorithm calculates. This function also called a reward 

function, is the expected reward
1tr +
, for an action 

ta

performed in a given state 
ts . Agents learn to treat the 

environment based on previous experiences they have 

gained. Q-value measures the value of each experience. 

Also, the reward function tunes the Q-value. As shown 

in Fig. 1, after each action 
ta , the agent is moved from 

the state 
ts to a new state 

1ts +
and receives a reward 

1tr +
. This reward reflects the importance of the action 

and can be the basis for deciding what to do next. The 

sequences of states in which each agent enters over time 

can be represented by 

0 0 0 1 1 1 2 2 2( , , , , , , , , ,..., , , )t t ts r a s r a s r a s r a .  

 
Fig. 1.  Environmental interactions in Q-learning [17]. 

 

Q-learning is called model-free because it does not 

need prior knowledge of the environment to learn the 

value of an action in a given state. It can solve our 

problem with rewards without the need for consistency. 

Here, an optimal policy can maximize the expected 

value of the total reward through multiple iterations. In 

this way, Q-training can find the optimal action-

selection policy for each FMDP over time through a 

somewhat random policy. The components of our RL-

based offloading approach are as follows: 

Agent: In our modeling, IDS is an agent. 

State: Let 
t

s S  is the current state of the agent, 

which S denotes the state space. Thus, we have  

(1)  " ", " "ABEN tIGN t ack=S . 

Action: We represent the current action by 

t
a A , which A  denotes the action space. Thus, 

we have 

(2) 

( )

( )

" "

,

 "

  

 "

i

i

QV Predict Current state

AV argmax QVi

 
 
 
 


= −

= 

=A  

,where action vector (AV) as ( )   0,1iAV Rnd=  

and Q vectors (
iQV ) for all   i sb  . Here, 

sb  is 

the space of random actions. Here, actions are fed into 

iAV . Also, 0, 1, and 2 represent the BENIGN, LDAP, 

and NetBIOS , respectively. There are many ways to 

choose a strategy. We use the greedy technique, in 

which the action with the highest value is superior to 

the others. This action is represented as 

( )arg max ,t t t
a

Q s aa B . 

Transition Function: It is the likelihood of 

performing the action 
t

aa =  to transmit the agent 

from a state 
t

ss =  to a state 
1t

ss
+

= . We represent 

this probability with ( , | , )P s r s a , which 

: [0,1]P   →S A S and 

( , | , ) 1
s r

P s r s a


 = . 

Reward Function: After the agent chooses the 

desired action and moves to a new state, it receives a 

reward 
1

i

t
r

+
. 

Q-learning can be shown as   ( )1 1 1
, , , ,

t t t t t
s a r s a

+ + +
.   

In other words,  starting from the state 
t

s , it acts 
t

a , 

receives the reward 
1t

r
+

, and finally reaches the new 

state 1t
s

+ . In the new state, it aims to perform an action 

1t
a

+
. These operations result in updating ( ),

t t
Q s a . 

An agent receives information from the 

environment and responds with action in an RL pattern. 

This action ultimately changes the environment. For the 

actions the agent performs, a reward is given by the 

environment depending on the effectiveness.  

The essential corrections we make to the above 

research are as follows: 

• We create an artificial ecology using a labeled 

attack dataset. 

• The agent creates a classification using 

simulated environment modes to predict 

honeypot labels. 

• The simulated environment rewards the agent 

for correct/incorrect predictions. 

The upgraded framework supports a well-known 

RL method called Q-learning [17] to identify 

honeypots using data. The Q-learning algorithm finds 
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the best Q function for the agent (here, classifier). The 

Q function evaluates each state-action pair. Over time, 

with the agent choosing the current policy, this amount 

equals the total reward. 

The Q-learning algorithm is one of the off-policy 

RL methods. We adopt the simplest form of it, which is 

called single-step Q-learning. It is defined as follows: 

(3) ( ) ( ) ( )

( )

1

1
, , max ,

,

t

t t t t t
b

t t

r

Q s a Q s a Q s b

Q s a

 

+

+

 
 
 +
 

 +  
 
− 
 
  

 

In the above formula, Q  is the learned value-action 

function. Also,   is the learning rate. Another 

important hyperparameter is the discount factor 

0 1  . When it is small, the agent will have slower 

actions. 

After determining the transition function P and the 

received reward 
1t

r
+

 by the agent, the MDP problem 

can be easily solved using dynamic programming 

algorithms. Here, the core idea is to use the value 

function ( )V s  to find the optimal action *a . The 

optimal action in any state ts  is the action that brings 

the most reward to the agent. For this purpose, the state 

value function must be expressed in the following 

form, which is known as the Bellman equation: 

(4) * 1 * 1( ) max ( . ( ) | , )t t t tV s r V s s s a a+ +=  + = =  

The above formula after simplification can be 

rewritten as follows: 

(5) * *

,

( ) max ( , | , )[ . ( )]
a

s r

V s P s r s a r V s


 = +  

One of the most common ways to solve the Bellman 

equation is to rewrite it in the following recursive form: 

(6) 1

,

( ) max ( , | , )[ . ( )]t t
a

s r

V s P s r s a r V s+


 = +  

Thus, the value of all states can be obtained. Given 

that 0 1  , it can be proved that the Bellman 

equation will converge and, therefore, the solution is as 

follows: 

(7) *( ) lim ( )t
t

V s V s
→

=  

The key advantage of Q-learning over other RL 

methods is that it converges very quickly. The main 

reason is that 𝑄 can directly approximate the optimal 

action-value function, 
*

q . Here, the policy determines 

which state-action pairs to visit and update. Like most 

RL methods, the prerequisite for convergence is that all 

pairs continue to be updated. Under this assumption and 

other common indefinite approximation conditions in 

the sequence of size-step parameters, it is found that Q  

converges with a probability of 1 to 
*

q . Another 

advantage of Q-learning is that it does not require a 

specific environment model. In RL terminology, it is 

called a model-free method and does not require a 

predetermined policy to find any optimal state-action 

pair. The pseudo-code of the Q-learning for the 

offloading problem is shown in Algorithm 1. 

Algorithm 1 Pseudo-code of the Q-learning for the problem. 

Input: the set of states S, the set of actions A , the set of terminal states T  

Output: the optimal action-value function vector 
*

Q  

1: Set 0t =  

2: for each agent do 

3: for 
ts S do 

4: for t
a A  do 

5: Initialize ( ),
t t

Q s a  arbitrarily 

6: 
Initialize terminal state value, ( ), . 0Q =T  

7: end for 

8: end for 

9: end for 

10: repeat 

11: Initialize 
t

S  

12: repeat (for each step of the episode) 

13: Choose 
t

A  from 
t

S  using policy derived from 
t

Q  (e.g., ℇ-greedy) 

14: Take action 
t

A , observe 
1t +

R , 
1t +

S  

15: 
( ) ( ) ( ) ( )1 1

, , max , ,
t t t t t t t t

 
+ +

  + + −
 B

Q S A Q S A R Q S B Q S A  using Eq. (3) 

16: 
1t t +

S S  
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17: 
until 

t
S T  

18: 1t t +  

19: until Max_Num_Episodes 

20: ( )*
,

t t
Q Q S A  using Eq. (7) 

21: return 
*

Q  

 

We use a Neural Network (NN) with fully-

connected nodes to approximate the Q function. Here, 

we use the features extracted from the labeled dataset 

as the input to the NN. The NN output shows the Q 

function for a set of possible actions. As mentioned 

earlier, the Q function indicates how beneficial the 

current action is. The pseudo-code of Deep Q-Network 

(DQN) has been shown in Algorithm 2. Instead of the 

expression used in Eq. (3), the DQN model uses a 

quadratic loss function to update the Q function. This 

loss function is defined as follows: 

(8) ( ) ( ) ( )
2

1 1
, max , ,

t t t t t t
b

Q s a r Q s b Q s a
+ +

  + −
  

 

Adversarial RL works very well for unbalanced 

datasets. We attach a new RL agent to the environment 

to capture this feature. The training operation for 

environmental and main classification agents is 

performed parallel using DQN. The action (output) of 

the classifier predicts the type of influence for the 

sample dataset (input). The environmental agent action 

will be the attack class used to generate new samples in 

the training process. In other words, the environmental 

agent tries to direct the generation of samples to 

increase the errors produced by the classification agent. 

This reduces the reward for the classifier and forces it 

to focus on the most challenging samples. All positive 

rewards for the manager will be negative for the 

environment. In this way, the environment learns which 

classes produce the most failures for the primary agent. 

It will try to increase the number of such states with a 

certain probability. To do this, we use two Q functions: 

a (𝑠, 𝑎) function responsible for optimizing the 

classifier and another (𝑠, 𝑎) function for optimizing the 

environment. Using the CICDDos2019 dataset, the 

primary Q function has a set of actions (ac [0-2]) 

proportional to the number of classifier classes. The 

environmental Q function, on the other hand, contains a 

set of measures (ae-train [0-6] or ae-test [0-11]). These 

actions correspond to potential attacks on the 

training/test dataset. 

The strategy adopted throughout the training 

corresponds to a diminishing greedy − , ensuring 

that the exploration begins with a high value and 

gradually diminishes as the episodes go. Throughout 

the dataset, we treat each episode as a training cycle. 

An episode is also often referred to as an epoch. The 

agent and the environment determine their behaviors 

based on their policy, with each sample having a 

distinct lower constraint  . The lower bound   is 

kept low for each classifier to optimize detection. 

Conversely, the lower bound of the environmental 

policy is set as a hyper-parameter. 

Regarding the difference between how our 

proposed method works with DQN, pay attention to the 

following steps: 

• The environmental agent and the classifier 

agent randomly initialize the Q-value. In 

addition, an initial state s0 is randomly 

generated from the state of the dataset to 

activate the Q function. 

• The environmental agent chooses a honeypot 

action 
te

a  based on its current policy and 

states. 

• The environmental agent randomly chooses 

the current state from the set t
s  inside the 

feature-label pair ( , )
tt e

s a . 

• After the environmental agent takes a certain 

state, the counterparty agent, similar to DQN, 

performs the classification based on the policy 

and maps it to 
te

a . 

• After comparing the environmental action 

with the actual label, if the two are different 

from each other, the appropriate reward is 

given to the agent by the environment. 

• Similar to DQN, the environmental agent is 

provided with a new state relevant to the next 

feature-label pair 
11

( , )
tt e

s a
++

. 

• Using the obtained reward values and 

predicted future states, the policy functions of 

the classifying agents and the environment 

agents are modified according to the DQN 

update rule. 

The initial value of the reward function is 0.99, with 

a positive reward of +0.99 and a negative reward of 0. 

Cross-entropy and stratified hinge functions are used to 

calculate the distance between expected and actual 

actions (labels) and how that distance relates to the 

reward. The shorter the distance, the greater the reward. 

Another possible reward function is to offer a variety of 

rewards depending on the attack. Finally, the most 

superficial reward of 0.99 is selected for superior 

performance. The steps of the method adapted from a 

standard DQN algorithm are shown in Algorithm 2. 

These different stages enable the environmental factor 
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to be trained with an adversarial strategy.  

In the proposed algorithm, we have made three 

other modifications to DQN as follows: 

  The final method is based on DDQN, a version of 

DQN that uses two separate networks to select and 

evaluate actions. 

 The actual loss function used to train agents is Huber, 

similar to a quadratic loss up to a certain threshold. The 

Huber loss seeks to minimize the importance of slopes 

that may exhibit explosive behavior. 

  Because our agents are made using two separate 

neural networks, we use two greedy − methods. We 

start both networks significantly, decreasing to 0.73 for 

the environment network and 0.02 for the classifier 

network. Experimentally, we have discovered that high 

  values are critical for the environment (active 

exploration) to achieve excellent results. 

 

Algorithm 2 Pseudo-code of AE-RL for the problem.  

1: ( , )
tc cQ s a  ,   ( , )

te eQ s a  

2:     For episode 

3:         0   CICDDos2019 datasets A random sampling=  

4:            Initialize Environment Agent:    
tea using greedy − derived from ( , )

te eQ s a  

5:             Replace ts  where the label is 
tea  

6:                  Initialize Classifier Agent:     
tca  using greedy −   derived from ( , )

tc t cQ s a  

7:                     
1 )  ( , , ) ( ,

t t t tc e t c eR rewards for enviro tL r r s rnmen r+→ →→  

8:                           Environment Agent:     
1tea
+

 using  greedy −  derived from  ( , )
te t eQ s a  

9:                                  Replace 
1ts +

 where the label is 
1tea
+

 

10:                                   Classifier Agent:     
1tca
+

 using greedy −   derived from ( , )
tc t cQ s a  

11:                     Q function update: gradient descent on the loss function 

12:                           
11

2

1( max ( , ) ( , ))
t e t tt

e a e t e e t er Q s a Q s a
++

++ −  

13:                           
11

2

1( max ( , ) ( , ))
t c t tt

c a c t c c t cr Q s a Q s a
++

++ −  

 

 

Fig. 2 shows the structure of the proposed method. 

The upper part of the figure shows the training step, 

while s0 represents the initial states randomly selected 

from the dataset. Also, the prediction step is shown in 

the lower part of the figure, which relies entirely on the 

previously trained classifier. Adversarial (environment) 

and defense agent (classifier) are complex neural 

networks. The architecture consists of a multilayer 

neural network with 100 neurons per layer in both 

samples. While the complexity of this design offers a 

competitive reaction time, RL training optimizes 

weights and biases. Both attackers and AEs may use the 

current sample properties as input while generating 

network-based outputs. This classifier produces one of 

eleven possible attack types as the honeypot output. As 

a result, the defense agent neural network creates a 

classifier. However, the adversarial agent’s neural 

network can not be considered a classifier but a 

generator of all attacks. 
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Fig. 2. The structure of the proposed method. 

 

4.  PERFORMANCE EVALUATION

We implemented our proposed model in Python 

using the TensorFlow package on the CICDDoS2019 

dataset [25, 26]. The CICDDoS2019 dataset includes 

several samples containing network features and related 

labels for honeypots with varying potential values , 

such as binary anomalies or multi-classes. The 

CICDDoS2019 dataset results from a collaboration 

between the Canadian Communications Security 

Establishment (CSE) and the Canadian Institute for 

Cyber Security (CIC). It includes two different DDoS 

attacks: NetBios and LDAP. These features were scaled 

to the [0, 1] range. The final post-preprocessing dataset 

has 164 attributes. Each test and training sample offers 

one of 11 possible items. To help interpret the data, the 

training/test tags fall into three new categories: 

BENIGN, NETBIOS, and LDAP. Except for BENIGN, 

which means no infiltration, all previous classes are 

related to attacks. 

 We trained the model using 80% of the obtained 

data and used the remaining 20% as a validation set to 

fine-tune the meta-parameters. This study labeled 

network features as states and values as actions. Apart 

from the input and output layers, we used a total of two 

hidden layers with a RELU activation function in a 

fully connected neural network. Various important 

parameters must be discovered and examined during 

training to identify the most appropriate and optimal 

model values. At the beginning of the training, the 

discount rate   is set to 0.1. It shows that the agent 

performs the exploration with unpredictability and a 

deception rate of 0.98. It decides how the agent's 

learning performance will improve in response to 

future rewards. 

We chose a discount factor   = [0, 1] and the size 

of the batch as1. The amount of loss/rewards obtained 

during the training process is shown in Fig. 3 for 

different values of discount factors   for target 

prediction. Fig. 3-a and 3-b show the reward and loss 

values by setting them to 0.001. We gradually increased 

the learning rate 0.2 and calculated the loss/reward 

values in Figs. 3-a and 3-b. Findings show that 

increasing the discount coefficient   increases the 

value of losses. As can be seen from the figure, the loss 

value in the worst-case scenario reaches 1.5 when the 

discount factor is 0.001. As shown in Fig. 3, discount 

factor values reflect the rapid growth trend in the reward 

values. Based on the behavior of the adversary agent, a 

lower discount rate    leads to a lower loss value. This, 

in turn, leads to more accurate model learning, 

especially when the episode counter is small. 

 

 
Fig. 3. Loss/reward values of the learning process in the 

proposed model. 
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Fig. 4 shows a histogram of the attacks generated by 

an attacker during training in different epochs 

(iterations). Histograms show only three special 

episodes on the training dataset. At the beginning 

(period zero), the environment randomly generates 

attacks. As the environmental agent’s training 

progresses, it learns which attacks maximize rewards. 

As can be seen from the figure, the frequency of 

different attacks has a random distribution. However, 

the figure shows an upward trend in specific attacks, 

namely NETBIOS and LDAP, while at the same time, 

the usual traffic is decreasing. This behavior is expected 

to see in a dynamic (intelligent) algorithm. Simply 

speaking, the proposed algorithm tries to regulate the 

bias caused by the variable dataset during the training 

phase. Comparing the frequency of attack types in the 

training dataset with the distribution of attacks created 

by the environmental agent in the lower right part of 

Fig. 4 has an interesting implication. It shows how the 

intelligent environment actively changes the unbalanced 

data distribution to increase classification performance. 

 

 

 
Fig. 4. Distribution of attacks generated by an attacker during training in different epochs. 
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Fig. 5 shows the confusion matrix of the proposed 

model to create the policy network. As is shown, the 

proposed method produces minor false negatives for 

identity fraud and flooding attacks. It tries to increase 

the classification of unusual classes. As seen from the 

figure, the proposed method may minimize the false-

negative rate for regular classes to obtain a significant 

false-positive rate for the standard classes. Thus, 

minimizing false-negative rates for duplicate classes 

improves the classification of less common ones. We 

observe that the proposed method dramatically increases 

the frequency of accurate estimates for the LDAP 

minority class. 

Overall, it can be concluded that the proposed 

method has a high prediction accuracy for normal 

samples. This is because it clusters the majority samples 

to the closest minority samples. At the same time, since 

the majority classes are clustered and do not cover a 

wide range of locations, more predictions are made for 

the minority classes, leading to a significant number of 

accurate estimates. On the other hand, the proposed 

method works well in most BENIGN classes, albeit 

with a lower proportion of valid estimates. This is 

because it retains the majority samples closest to the 

minority samples. Simply speaking, the proposed 

method has more accurate predictions for the majority 

classes and, at the same time, fewer predictions for the 

minority classes. It works well in identifying BENIGN, 

NETBIOS, and LDAP threats. In addition, it works well 

in identifying BENIGN samples despite their small size. 

 

 
Fig. 5. Confusion matrix of the proposed model. 

 

As shown in Fig. 6, the proposed method generates 

accurate values for different labels (BENIGN, 

NETBIOS, and LDAP). At the same time, it offers the 

highest F-scores and accuracy, especially for minority 

groups (BENIGN). 

 
Fig. 6. F-score values of the proposed model. 

 

One of the most important tricks of our proposed 

model is that it creates a significant decrease in the 

number of desirable false negatives in exchange for a 

slight increase in the number of false positives. The 

following points summarize our findings: 

 The classification results with the proposed method 

are entirely comparable to state-of-the-art 

techniques' results. 

  Since the proposed method requires less training and 

much shorter forecasting time, it is suitable for use 

in practical honeypots in typical IoT environments. 

 The proposed method can reduce classification errors 

in classes that occur less frequently. 

 The only drawback of the proposed method is its false 

negative. False negatives are often found in less regular 

classes because algorithms maximize overall prediction 

performance. Fortunately, in a real-world honeypot 

environment, this phenomenon rarely occurs. 

 

5.  CONCLUSION 

This paper presented an adversarial Deep 

Reinforcement Learning (DRL) model for honeypots. It 

can do better by using experiences derived from the 

environment. Further regulation of the agent's behavior 

is made with an adversarial goal. In the proposed model, 

the environment tries to complicate the difficulty level 

of predictions. As the second agent, we used a simulated 

environment. In addition, a new method for 

oversampling low-performance categories was 

introduced, which helps train the AERL algorithm. 

We evaluated the performance of our proposed 

model with NetBIOS and LDAP attacks on the 

CICDDoS2019 dataset. The evaluation results showed 

that the proposed method requires less training and a 

much shorter forecasting time. Therefore, it is suitable 

for practical honeypots in typical IoT environments. It 

can also reduce classification errors in classes that occur 

less frequently. Our proposed model is not only efficient 

for highly imbalanced datasets but also does not require 
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discretization of the reward function. The only 

drawback of the proposed method is its false negative. 

Fortunately, in a real-world honeypot environment, this 

situation rarely occurs. 

Other RL methods can be considered for future 

research, especially Markov Decision Process (MDP). 

Also, combining RL with metaheuristic techniques can 

probably have a significant effect on speeding up the 

algorithm. 
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