
Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

17
Paper type: Research paper

DOI: 10.30486/mjtd.2023.1977229.1011

How to cite this paper: A. Pashaei, M. Esmaeil Akbari, M Zolfy Lighvan and A. Charmin, “Honeypot Intrusion Detection System

using an Adversarial Reinforcement Learning for Industrial Control Networks”, Majlesi Journal of Telecommunication

Devices, Vol. 12, No. 1, pp. 17-28, 2023.

Honeypot Intrusion Detection System using an Adversarial

Reinforcement Learning for Industrial Control Networks

Abbasgholi Pashaei1, Mohammad Esmaeil Akbari2*, Mina Zolfy Lighvan3, Asghar Charmin4

1,2,4- Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran.

Email: a-pashaei@iau-ahar.ac.ir, m-akbari@iau-ahar.ac.ir (Corresponding author), a_charmin@sut.ac.ir.

3- Department of Electrical and Computer Engineering Faculty, Tabriz University, Tabriz, Iran.

Email: mzolfy@tabrizu.ac.ir

Received: 26 October 2022 Revised: 14 November 2022 Accepted: 25 December 2022

ABSTRACT:

Distributed Denial of Service (DDoS) attacks are a significant threat, especially for the Internet of Things (IoT). One

approach that is practically used to protect the network against DDoS attacks is the honeypot. This study proposes a

new adversarial Deep Reinforcement Learning (DRL) model that can deliver better performance using experiences

gained from the environment. Further regulation of the agent's behavior is made with an adversarial goal. In such an

environment, an attempt is made to increase the difficulty level of predictions deliberately. In this technique, the

simulated environment acts as a second agent against the primary environment. To evaluate the performance of the

proposed method, we compare it with two well-known types of DDoS attacks, including NetBIOS and LDAP. Our

modeling overcomes the previous models in terms of weight accuracy criteria (> 0.98) and F-score (> 0.97). The

proposed adversarial RL model can be especially suitable for highly unbalanced datasets. Another advantage of our

modeling is that there is no need to segregate the reward function.

KEYWORDS: Intrusion Detection, Honeypot, Markov Decision Process, Adversarial Learning.

1. INTRODUCTION

Distributed Denial of Service (DDoS) attacks cause

flood traffic from multiple sources to selected nodes and

impede the flow of legal information across a network

[1]. They are still a significant threat, especially to the

Internet of Things (IoT). If the victim node is a server

that needs to process information quickly, the entire

network operation will be stopped. One approach

practically used to protect the network against DDoS

attacks is the honeypot [2]. The goal is to examine a

potential attacker's behavior by analyzing it. In this way,

we can strengthen the primary system based on the

patterns learned by the honeypot so that it is less

vulnerable to similar attacks in the future. The first line

of defense is to detect DDoS attacks. Then, attack flows

can be identified and labeled in real-time in the second

line of defense.

Recently, the importance of Intrusion Detection

Systems (IDSs) has been highlighted due to their

economic gain to organizations [3, 4]. Recently, the

attention of Machine Learning (ML) researchers has

been focused on the use of IDS as a Decision Support

System (DSS) [5]. In this regard, it is tried to design

IDSs with the lowest detection error and high prediction

speed. Security and privacy concerns are increasingly

disrupting access to operational data. Using suitable ML

methods for Honeypot systems can speed up the

detection of attacks. While existing technologies can

effectively support Honeypot, they lack comprehensive

activity validation. Unfortunately, one of the most

critical weaknesses of ML-based honeypots is that they

cannot detect network changes effectively. Another

major challenge in designing IDSs is the issue of feature

extraction and preprocessing [6, 7, 8]. In other words,

associating features and intrusion labels is not an easy

task at all. The actual penetration mode is challenging.

For this reason, in almost all studies in this field,

supervised learning methods are used for feature

generation [9, 10].

Reinforcement Learning (RL) methods are powerful

tools for improving the learning of supervised learning

methods [11, 12]. The application of Deep

Reinforcement Learning (DRL) [13, 14] has grown

dramatically. The main distinguishing feature of RL

methods is the use of experiences gained from the

environment over time [15]. This is precisely the way

humans and animals learn. The environment takes

action from the agent and returns new modes and

mailto:m-akbari@iau-ahar.ac.ir
mailto:mzolfy@tabrizu.ac.ir

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

18

rewards [16]. Then, based on the acquired states and

rewards, the algorithm optimizes the agent’s policy

function. The agent uses the policy function to calculate

the following best action based on the current state and

the rewards provided by the environment [17].

Most of the studies conducted so far on IDSs have

been using ML techniques. Among these, the most

considerable contribution of studies is for classical ML

techniques [16, 18, 19, 20]. Also, several studies have

been conducted to evaluate ML methods, such as RL

[11, 12] and DRL [3, 21]. Some recent research has

used the manipulation of specific models of ML, called

adversarial machine learning [16, 22, 23, 24]. The most

important feature of this type of study is injecting

insufficient data into the ML algorithm to fail the

classification model. Each of these studies has been

modeled differently. The most significant differences

are the design of the states, actions, and reward

functions. Thanks to powerful reward functions, DRL is

very suitable for online training and can quickly respond

to changes in network conditions.

This paper proposes a high-accuracy DRL model

combining simulated and real-world environments. If

the agent's prediction is correct, it will be given a

positive reward from the environment. We define the

objective function as equal to the reward of the

environment. The goal is to maximize the objective

function. The main strength of the proposed modeling is

that it randomly extracts new samples (states) from the

pre-registered sample dataset. The proposed system,

using the experiences gained from the environment, can

produce better results contrary to the policy of the

adversarial agent. If the classifier's mispredictions

increase, then environmental behavior actively reduces

the rewards given to the agent. This way, the agent is

forced to learn the most complex cases. Our primary

motivation in this research is to design two-way

honeypots using the RL approach. It allows two-way

honeypot surveillance of internal/external attackers.

These honeypot devices can be used in industrial LANs

in the cyber-physical IoT. It can be a legal way to

provide different types of data to domestic and foreign

consumers. The proposed RL-based system can

strengthen the security of honeypots against all kinds of

attacks. It detects internal/external attacks through

multilevel RL techniques. In the proposed method, the

event management technique is based on the safe

distribution of toxins. The system develops DQ,

Adversarial Environment (AE), and RL modules for

successful attack detection at runtime.

We used the CICDDoS2019 (Knowledge Data

Discovery) Database [25, 26] from the Canadian

Institute for Cyber Security in previous research. This

dataset contains attacks that may compromise IDS

security and make it suitable for analysis. To evaluate

the performance of the proposed method, we compare it

to two categories of DDoS attacks, including NetBIOS

and LDAP. NetBIOS stands for Network Basic

Input/Output System [27]. Its primary purpose is to

allow applications in a LAN to communicate and create

sessions to access shared resources. Also, LDAP stands

for Lightweight Directory Access Protocol [28]. It is an

industrial protocol for controlling distributed directory

information on a network.

The most important contributions of this paper are as

follows:

• We introduce a hybrid architecture of supervised

and RL models to predict attack patterns. It can

be generalized to almost all other types of

industrial networks. The proposed model using

adversarial RL can be especially suitable for

highly unbalanced datasets because samples

matched with incorrect classification labels are

often used for training.

• We show through experimentation that the

proposed new model has a higher prediction

accuracy than nonlinear models and, at the same

time, requires much less prediction time.

• The next step is to generate a data packet for

testing and transmit it to the "patient." The tester

package is identical to any other data package.

However, since its contents are obscured and

filled with a random data stream, the victim may

not deduce that it came from the honeypot.

In the rest of this paper, we have a complete study of

the previous studies in Section 2; Section 3 presents the

formulation of the problem; Section 4 presents the

experiments to evaluate the modeling. Finally, in

Section 5, the conclusion is presented.

2. RELATED WORK

Most of the studies that have been done so far on

intrusion detection systems have focused on ML

methods. Since the scope of this paper is reinforcement

learning, our primary focus is on reviewing these types

of studies. A review of the literature shows that much of

previous research has focused on improving the

performance of methods. Most of the research has

included comparing the performance of the proposed

strategies with other Machine Learning (ML)

approaches. Also, numerous studies have been

conducted to evaluate ML methods such as Deep

Reinforcement Learning (DRL) [3, 21].

Pashaei et al. [20] used SARSA based Markov

Decision Process (MDP) reinforcing learning method to

identify attacks. They compared the DRL-based strategy

with a conventional scheduling-based plan. This

evaluation was done considering learning periods,

implementation time, and rewards.

In another study, Holgado et al. [18] proposed an

ML technique for detecting multi-stage attacks that use

a Hidden Markov Model (HMM) to predict the

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

19

attacker's following action. In [19], a comprehensive

study of DRL cybersecurity capabilities is conducted,

including real-time traces and simulations. They

focused on mastering adversarial reinforcement learning

techniques and, at the same time, examining the effect

of multi-agent DRL models on intrusion detection

systems. Al-Amin et al. [29] proposed an online

deception technique that includes various scenarios. In

these scenarios, defending activities dynamically affect

attacking plans and tactics. Defender actions are

modeled as a Partially Observable Markov Chain

(POMDP). This RL model monitors the defender's

belief in the attacker's progress. As a result, the defender

distracts the attacker from the decoy nodes.

Alavizadeh et al. [5] proposed a DRL model to

identify and classify different types of network intrusion

attacks. Their proposed model uses a labeled dataset as

input. It can learn automatically by leveraging trial and

error techniques. The most critical weakness of their

method is how the MDP adapts to the environment.

Unfortunately, this study does not explain how to adapt

to the environment. Therefore, it is impossible to make

a clear judgment about the learning rate of the proposed

method based on environmental experiences. This, in

turn, obscures the system's accuracy in detecting

network attacks.

Some studies [11, 12] have used a combination of

reinforcement learning (RL) and game theory. In

addition, machine learning may be used to examine

players 'beliefs to develop a strategy and competitors'

beliefs to predict their movements. [30] provides a

context-based intrusion detection system that uses a

distributed network of independent DRL agents to

improve detection accuracy for threats. They use the

NSL-KDD, UNSWNB15, and AWID datasets to

achieve greater accuracy and lower the false-positive

rate (FPR). Another study [31] used RL as a sensor

network analysis engine and IDS. Combining adaptive

machine learning with clustered IDS results in higher

accuracy and better recall rates.

It is possible to manipulate specific models of ML.

This is called adversarial machine learning. It is a

malicious attempt to enter insufficient data into the ML

algorithm to cause the classification model to fail.

Adversarial is often used in two ways: poisoning the

environment and avoidance. The first goal is

manipulating the training data to produce the wrong

classification decision. On the other hand, the second

technique assumes that the model is already trained and

tries to correct its behavior to make incorrect

predictions. Numerous studies have examined the effect

of poor learning problems on NIDS [24].

In other studies, RL has been used to detect

anomalies. Caminero et al. [22] advised a multi-agent

RL system. Their proposed model has higher accuracy

and F-score than the famous ML algorithms.

Suwannalai et al. [23] presented multi-agent RL with

DRL.

Adversarial reinforcement learning [22] is a type of

RL that combines environmental learning with an

adaptive RL algorithm. Establishing a reliable reward

mechanism is of great importance. The SMOTE [16] is

a machine learning technique that solves problems using

an unbalanced dataset. Unbalanced datasets often occur

in practice and need to be controlled. They solve this

problem by developing an adversarial RL with SMOTE

leverage. This research was performed on the NSL-

KDD dataset and showed a remarkable superiority over

previous DRL methods. Unfortunately, this technique

cannot distinguish unknown classes with high accuracy

only by relying on positive samples. The authors in [32]

modified the sampling function of the instruction data.

This method provides incentives to detect errors during

training by sampling the training data. The proposed

technique performs best when the DDQN algorithm is

used. It leads to an excellent F-score in AWID and

NSL-KDD datasets.

In [33], an optimal strategy for deceptive resources

was achieved by leveraging an attacker-defender game.

In [4], DRL combined with ML is used to detect DoS

attacks on the server side. The main weakness of the

proposed method is that it can only be used for single

DoS attack detection. Dowling et al. [34] conducted

another study on deploying a honeypot using the RL.

One of the significant drawbacks of this study is that it

uses only the SSH protocol and does not support

interaction-level samples.

So far, several RL strategies have been used for

Intrusion Detection Systems (IDSs), which aim to

improve accuracy. Unfortunately, in this research, few

explanations are provided regarding the formulation of

RL or the precise setting of the above parameters. They

also do not explain learning and interacting with the

infrastructure network environment. Contrary to the

above research, in this article, we provide a complete

formulation of development and implementation for the

next Honeypot iteration based on the DRL technique.

The data gained from these studies was very beneficial

in building the proposed EIDS- AERL system.

Adversarial Environment Reinforcement Learning

(AERL) based Honeypot was used as a substitute

strategy for standard EIDS techniques in the suggested

method. AERL learns by interacting with two agents

and obtaining a reward function. However, AERL

performs better in the unbalanced domain.

3. PROPOSED METHOD

This study aims to develop a new multi-agent

adversarial RL strategy based on the SARSA deep

algorithm [17] to improve the classification of different

types of minority attacks. As mentioned earlier, these

tests run on the CICDDoS2019 dataset [25, 26]. This

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

20

research enhances the approach of [35] and makes

essential modifications to it that lead to improved

performance. Readers interested in studying AE can

refer to [22]. Details of the original AE-DQN can also

be found in [23]. The generalities of the RL algorithm

are also found in [36].

 We use Q-learning in the family of Finite Markov

Decision Process (FMDP) approaches to model the

environment. Here, "Q" refers to the function that the

algorithm calculates. This function also called a reward

function, is the expected reward
1tr +
, for an action

ta

performed in a given state
ts . Agents learn to treat the

environment based on previous experiences they have

gained. Q-value measures the value of each experience.

Also, the reward function tunes the Q-value. As shown

in Fig. 1, after each action
ta , the agent is moved from

the state
ts to a new state

1ts +
and receives a reward

1tr +
. This reward reflects the importance of the action

and can be the basis for deciding what to do next. The

sequences of states in which each agent enters over time

can be represented by

0 0 0 1 1 1 2 2 2(, , , , , , , , ,..., , ,)t t ts r a s r a s r a s r a .

Fig. 1. Environmental interactions in Q-learning [17].

Q-learning is called model-free because it does not

need prior knowledge of the environment to learn the

value of an action in a given state. It can solve our

problem with rewards without the need for consistency.

Here, an optimal policy can maximize the expected

value of the total reward through multiple iterations. In

this way, Q-training can find the optimal action-

selection policy for each FMDP over time through a

somewhat random policy. The components of our RL-

based offloading approach are as follows:

Agent: In our modeling, IDS is an agent.

State: Let
t

s S is the current state of the agent,

which S denotes the state space. Thus, we have

(1)  " ", " "ABEN tIGN t ack=S .

Action: We represent the current action by

t
a A , which A denotes the action space. Thus,

we have

(2)

()

()

" "

,

 "

 "

i

i

QV Predict Current state

AV argmax QVi

 
 
 
 


= −

= 

=A

,where action vector (AV) as () 0,1iAV Rnd=

and Q vectors (
iQV) for all i sb  . Here,

sb is

the space of random actions. Here, actions are fed into

iAV . Also, 0, 1, and 2 represent the BENIGN, LDAP,

and NetBIOS , respectively. There are many ways to

choose a strategy. We use the greedy technique, in

which the action with the highest value is superior to

the others. This action is represented as

()arg max ,t t t
a

Q s aa B .

Transition Function: It is the likelihood of

performing the action
t

aa = to transmit the agent

from a state
t

ss = to a state
1t

ss
+

= . We represent

this probability with (, | ,)P s r s a , which

: [0,1]P   →S A S and

(, | ,) 1
s r

P s r s a


 = .

Reward Function: After the agent chooses the

desired action and moves to a new state, it receives a

reward
1

i

t
r

+
.

Q-learning can be shown as ()1 1 1
, , , ,

t t t t t
s a r s a

+ + +
.

In other words, starting from the state
t

s , it acts
t

a ,

receives the reward
1t

r
+

, and finally reaches the new

state 1t
s

+ . In the new state, it aims to perform an action

1t
a

+
. These operations result in updating (),

t t
Q s a .

An agent receives information from the

environment and responds with action in an RL pattern.

This action ultimately changes the environment. For the

actions the agent performs, a reward is given by the

environment depending on the effectiveness.

The essential corrections we make to the above

research are as follows:

• We create an artificial ecology using a labeled

attack dataset.

• The agent creates a classification using

simulated environment modes to predict

honeypot labels.

• The simulated environment rewards the agent

for correct/incorrect predictions.

The upgraded framework supports a well-known

RL method called Q-learning [17] to identify

honeypots using data. The Q-learning algorithm finds

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

21

the best Q function for the agent (here, classifier). The

Q function evaluates each state-action pair. Over time,

with the agent choosing the current policy, this amount

equals the total reward.

The Q-learning algorithm is one of the off-policy

RL methods. We adopt the simplest form of it, which is

called single-step Q-learning. It is defined as follows:

(3) () () ()

()

1

1
, , max ,

,

t

t t t t t
b

t t

r

Q s a Q s a Q s b

Q s a

 

+

+

 
 
 +
 

 +  
 
− 
 
  

In the above formula, Q is the learned value-action

function. Also,  is the learning rate. Another

important hyperparameter is the discount factor

0 1  . When it is small, the agent will have slower

actions.

After determining the transition function P and the

received reward
1t

r
+

 by the agent, the MDP problem

can be easily solved using dynamic programming

algorithms. Here, the core idea is to use the value

function ()V s to find the optimal action *a . The

optimal action in any state ts is the action that brings

the most reward to the agent. For this purpose, the state

value function must be expressed in the following

form, which is known as the Bellman equation:

(4) * 1 * 1() max (. () | ,)t t t tV s r V s s s a a+ +=  + = =

The above formula after simplification can be

rewritten as follows:

(5) * *

,

() max (, | ,)[. ()]
a

s r

V s P s r s a r V s


 = +

One of the most common ways to solve the Bellman

equation is to rewrite it in the following recursive form:

(6) 1

,

() max (, | ,)[. ()]t t
a

s r

V s P s r s a r V s+


 = +

Thus, the value of all states can be obtained. Given

that 0 1  , it can be proved that the Bellman

equation will converge and, therefore, the solution is as

follows:

(7) *() lim ()t
t

V s V s
→

=

The key advantage of Q-learning over other RL

methods is that it converges very quickly. The main

reason is that 𝑄 can directly approximate the optimal

action-value function,
*

q . Here, the policy determines

which state-action pairs to visit and update. Like most

RL methods, the prerequisite for convergence is that all

pairs continue to be updated. Under this assumption and

other common indefinite approximation conditions in

the sequence of size-step parameters, it is found that Q

converges with a probability of 1 to
*

q . Another

advantage of Q-learning is that it does not require a

specific environment model. In RL terminology, it is

called a model-free method and does not require a

predetermined policy to find any optimal state-action

pair. The pseudo-code of the Q-learning for the

offloading problem is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the Q-learning for the problem.

Input: the set of states S, the set of actions A , the set of terminal states T

Output: the optimal action-value function vector
*

Q

1: Set 0t =

2: for each agent do

3: for
ts S do

4: for t
a A do

5: Initialize (),
t t

Q s a arbitrarily

6:
Initialize terminal state value, (), . 0Q =T

7: end for

8: end for

9: end for

10: repeat

11: Initialize
t

S

12: repeat (for each step of the episode)

13: Choose
t

A from
t

S using policy derived from
t

Q (e.g., ℇ-greedy)

14: Take action
t

A , observe
1t +

R ,
1t +

S

15:
() () () ()1 1

, , max , ,
t t t t t t t t

 
+ +

  + + −
 B

Q S A Q S A R Q S B Q S A using Eq. (3)

16:
1t t +

S S

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

22

17:
until

t
S T

18: 1t t +

19: until Max_Num_Episodes

20: ()*
,

t t
Q Q S A using Eq. (7)

21: return
*

Q

We use a Neural Network (NN) with fully-

connected nodes to approximate the Q function. Here,

we use the features extracted from the labeled dataset

as the input to the NN. The NN output shows the Q

function for a set of possible actions. As mentioned

earlier, the Q function indicates how beneficial the

current action is. The pseudo-code of Deep Q-Network

(DQN) has been shown in Algorithm 2. Instead of the

expression used in Eq. (3), the DQN model uses a

quadratic loss function to update the Q function. This

loss function is defined as follows:

(8) () () ()
2

1 1
, max , ,

t t t t t t
b

Q s a r Q s b Q s a
+ +

  + −
  

Adversarial RL works very well for unbalanced

datasets. We attach a new RL agent to the environment

to capture this feature. The training operation for

environmental and main classification agents is

performed parallel using DQN. The action (output) of

the classifier predicts the type of influence for the

sample dataset (input). The environmental agent action

will be the attack class used to generate new samples in

the training process. In other words, the environmental

agent tries to direct the generation of samples to

increase the errors produced by the classification agent.

This reduces the reward for the classifier and forces it

to focus on the most challenging samples. All positive

rewards for the manager will be negative for the

environment. In this way, the environment learns which

classes produce the most failures for the primary agent.

It will try to increase the number of such states with a

certain probability. To do this, we use two Q functions:

a (𝑠, 𝑎) function responsible for optimizing the

classifier and another (𝑠, 𝑎) function for optimizing the

environment. Using the CICDDos2019 dataset, the

primary Q function has a set of actions (ac [0-2])

proportional to the number of classifier classes. The

environmental Q function, on the other hand, contains a

set of measures (ae-train [0-6] or ae-test [0-11]). These

actions correspond to potential attacks on the

training/test dataset.

The strategy adopted throughout the training

corresponds to a diminishing greedy − , ensuring

that the exploration begins with a high value and

gradually diminishes as the episodes go. Throughout

the dataset, we treat each episode as a training cycle.

An episode is also often referred to as an epoch. The

agent and the environment determine their behaviors

based on their policy, with each sample having a

distinct lower constraint  . The lower bound  is

kept low for each classifier to optimize detection.

Conversely, the lower bound of the environmental

policy is set as a hyper-parameter.

Regarding the difference between how our

proposed method works with DQN, pay attention to the

following steps:

• The environmental agent and the classifier

agent randomly initialize the Q-value. In

addition, an initial state s0 is randomly

generated from the state of the dataset to

activate the Q function.

• The environmental agent chooses a honeypot

action
te

a based on its current policy and

states.

• The environmental agent randomly chooses

the current state from the set t
s inside the

feature-label pair (,)
tt e

s a .

• After the environmental agent takes a certain

state, the counterparty agent, similar to DQN,

performs the classification based on the policy

and maps it to
te

a .

• After comparing the environmental action

with the actual label, if the two are different

from each other, the appropriate reward is

given to the agent by the environment.

• Similar to DQN, the environmental agent is

provided with a new state relevant to the next

feature-label pair
11

(,)
tt e

s a
++

.

• Using the obtained reward values and

predicted future states, the policy functions of

the classifying agents and the environment

agents are modified according to the DQN

update rule.

The initial value of the reward function is 0.99, with

a positive reward of +0.99 and a negative reward of 0.

Cross-entropy and stratified hinge functions are used to

calculate the distance between expected and actual

actions (labels) and how that distance relates to the

reward. The shorter the distance, the greater the reward.

Another possible reward function is to offer a variety of

rewards depending on the attack. Finally, the most

superficial reward of 0.99 is selected for superior

performance. The steps of the method adapted from a

standard DQN algorithm are shown in Algorithm 2.

These different stages enable the environmental factor

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

23

to be trained with an adversarial strategy.

In the proposed algorithm, we have made three

other modifications to DQN as follows:

 The final method is based on DDQN, a version of

DQN that uses two separate networks to select and

evaluate actions.

 The actual loss function used to train agents is Huber,

similar to a quadratic loss up to a certain threshold. The

Huber loss seeks to minimize the importance of slopes

that may exhibit explosive behavior.

 Because our agents are made using two separate

neural networks, we use two greedy − methods. We

start both networks significantly, decreasing to 0.73 for

the environment network and 0.02 for the classifier

network. Experimentally, we have discovered that high

 values are critical for the environment (active

exploration) to achieve excellent results.

Algorithm 2 Pseudo-code of AE-RL for the problem.

1: (,)
tc cQ s a , (,)

te eQ s a

2: For episode

3: 0 CICDDos2019 datasets A random sampling=

4: Initialize Environment Agent:
tea using greedy − derived from (,)

te eQ s a

5: Replace ts where the label is
tea

6: Initialize Classifier Agent:
tca using greedy − derived from (,)

tc t cQ s a

7:
1) (, ,) (,

t t t tc e t c eR rewards for enviro tL r r s rnmen r+→ →→

8: Environment Agent:
1tea
+

 using greedy − derived from (,)
te t eQ s a

9: Replace
1ts +

 where the label is
1tea
+

10: Classifier Agent:
1tca
+

 using greedy − derived from (,)
tc t cQ s a

11: Q function update: gradient descent on the loss function

12:
11

2

1(max (,) (,))
t e t tt

e a e t e e t er Q s a Q s a
++

++ −

13:
11

2

1(max (,) (,))
t c t tt

c a c t c c t cr Q s a Q s a
++

++ −

Fig. 2 shows the structure of the proposed method.

The upper part of the figure shows the training step,

while s0 represents the initial states randomly selected

from the dataset. Also, the prediction step is shown in

the lower part of the figure, which relies entirely on the

previously trained classifier. Adversarial (environment)

and defense agent (classifier) are complex neural

networks. The architecture consists of a multilayer

neural network with 100 neurons per layer in both

samples. While the complexity of this design offers a

competitive reaction time, RL training optimizes

weights and biases. Both attackers and AEs may use the

current sample properties as input while generating

network-based outputs. This classifier produces one of

eleven possible attack types as the honeypot output. As

a result, the defense agent neural network creates a

classifier. However, the adversarial agent’s neural

network can not be considered a classifier but a

generator of all attacks.

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

24

C
IC

-D
D

o
S

20
1

9
 D

at
as

e
t

Tr
a

in
in

g
D

a
ta

se
t

Te
st

 D
at

as
e

t

P
re

-p
ro

ce
ss

in
g

N
o

rm
al

iz
at

io
n

O
n

e-
H

o
t

En
co

d
in

g

A
ge

n
t

E
n

vi
ro

n
m

e
n

t

A
ge

n
t

C
la

ss
if

ie
rTraining RL

Random Sampler

Reward
Calculations

Q function Updated
Agent Environment

Q
 f

u
n

ct
io

n
 U

p
d

at
ed

A
ge

n
t

E
n

vi
ro

n
m

e
n

t

EI
D

SH
-A

ER
L

Fig. 2. The structure of the proposed method.

4. PERFORMANCE EVALUATION

We implemented our proposed model in Python

using the TensorFlow package on the CICDDoS2019

dataset [25, 26]. The CICDDoS2019 dataset includes

several samples containing network features and related

labels for honeypots with varying potential values ,

such as binary anomalies or multi-classes. The

CICDDoS2019 dataset results from a collaboration

between the Canadian Communications Security

Establishment (CSE) and the Canadian Institute for

Cyber Security (CIC). It includes two different DDoS

attacks: NetBios and LDAP. These features were scaled

to the [0, 1] range. The final post-preprocessing dataset

has 164 attributes. Each test and training sample offers

one of 11 possible items. To help interpret the data, the

training/test tags fall into three new categories:

BENIGN, NETBIOS, and LDAP. Except for BENIGN,

which means no infiltration, all previous classes are

related to attacks.

 We trained the model using 80% of the obtained

data and used the remaining 20% as a validation set to

fine-tune the meta-parameters. This study labeled

network features as states and values as actions. Apart

from the input and output layers, we used a total of two

hidden layers with a RELU activation function in a

fully connected neural network. Various important

parameters must be discovered and examined during

training to identify the most appropriate and optimal

model values. At the beginning of the training, the

discount rate  is set to 0.1. It shows that the agent

performs the exploration with unpredictability and a

deception rate of 0.98. It decides how the agent's

learning performance will improve in response to

future rewards.

We chose a discount factor  = [0, 1] and the size

of the batch as1. The amount of loss/rewards obtained

during the training process is shown in Fig. 3 for

different values of discount factors  for target

prediction. Fig. 3-a and 3-b show the reward and loss

values by setting them to 0.001. We gradually increased

the learning rate 0.2 and calculated the loss/reward

values in Figs. 3-a and 3-b. Findings show that

increasing the discount coefficient  increases the

value of losses. As can be seen from the figure, the loss

value in the worst-case scenario reaches 1.5 when the

discount factor is 0.001. As shown in Fig. 3, discount

factor values reflect the rapid growth trend in the reward

values. Based on the behavior of the adversary agent, a

lower discount rate  leads to a lower loss value. This,

in turn, leads to more accurate model learning,

especially when the episode counter is small.

Fig. 3. Loss/reward values of the learning process in the

proposed model.

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

25

Fig. 4 shows a histogram of the attacks generated by

an attacker during training in different epochs

(iterations). Histograms show only three special

episodes on the training dataset. At the beginning

(period zero), the environment randomly generates

attacks. As the environmental agent’s training

progresses, it learns which attacks maximize rewards.

As can be seen from the figure, the frequency of

different attacks has a random distribution. However,

the figure shows an upward trend in specific attacks,

namely NETBIOS and LDAP, while at the same time,

the usual traffic is decreasing. This behavior is expected

to see in a dynamic (intelligent) algorithm. Simply

speaking, the proposed algorithm tries to regulate the

bias caused by the variable dataset during the training

phase. Comparing the frequency of attack types in the

training dataset with the distribution of attacks created

by the environmental agent in the lower right part of

Fig. 4 has an interesting implication. It shows how the

intelligent environment actively changes the unbalanced

data distribution to increase classification performance.

Fig. 4. Distribution of attacks generated by an attacker during training in different epochs.

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

26

Fig. 5 shows the confusion matrix of the proposed

model to create the policy network. As is shown, the

proposed method produces minor false negatives for

identity fraud and flooding attacks. It tries to increase

the classification of unusual classes. As seen from the

figure, the proposed method may minimize the false-

negative rate for regular classes to obtain a significant

false-positive rate for the standard classes. Thus,

minimizing false-negative rates for duplicate classes

improves the classification of less common ones. We

observe that the proposed method dramatically increases

the frequency of accurate estimates for the LDAP

minority class.

Overall, it can be concluded that the proposed

method has a high prediction accuracy for normal

samples. This is because it clusters the majority samples

to the closest minority samples. At the same time, since

the majority classes are clustered and do not cover a

wide range of locations, more predictions are made for

the minority classes, leading to a significant number of

accurate estimates. On the other hand, the proposed

method works well in most BENIGN classes, albeit

with a lower proportion of valid estimates. This is

because it retains the majority samples closest to the

minority samples. Simply speaking, the proposed

method has more accurate predictions for the majority

classes and, at the same time, fewer predictions for the

minority classes. It works well in identifying BENIGN,

NETBIOS, and LDAP threats. In addition, it works well

in identifying BENIGN samples despite their small size.

Fig. 5. Confusion matrix of the proposed model.

As shown in Fig. 6, the proposed method generates

accurate values for different labels (BENIGN,

NETBIOS, and LDAP). At the same time, it offers the

highest F-scores and accuracy, especially for minority

groups (BENIGN).

Fig. 6. F-score values of the proposed model.

One of the most important tricks of our proposed

model is that it creates a significant decrease in the

number of desirable false negatives in exchange for a

slight increase in the number of false positives. The

following points summarize our findings:

 The classification results with the proposed method

are entirely comparable to state-of-the-art

techniques' results.

 Since the proposed method requires less training and

much shorter forecasting time, it is suitable for use

in practical honeypots in typical IoT environments.

 The proposed method can reduce classification errors

in classes that occur less frequently.

 The only drawback of the proposed method is its false

negative. False negatives are often found in less regular

classes because algorithms maximize overall prediction

performance. Fortunately, in a real-world honeypot

environment, this phenomenon rarely occurs.

5. CONCLUSION

This paper presented an adversarial Deep

Reinforcement Learning (DRL) model for honeypots. It

can do better by using experiences derived from the

environment. Further regulation of the agent's behavior

is made with an adversarial goal. In the proposed model,

the environment tries to complicate the difficulty level

of predictions. As the second agent, we used a simulated

environment. In addition, a new method for

oversampling low-performance categories was

introduced, which helps train the AERL algorithm.

We evaluated the performance of our proposed

model with NetBIOS and LDAP attacks on the

CICDDoS2019 dataset. The evaluation results showed

that the proposed method requires less training and a

much shorter forecasting time. Therefore, it is suitable

for practical honeypots in typical IoT environments. It

can also reduce classification errors in classes that occur

less frequently. Our proposed model is not only efficient

for highly imbalanced datasets but also does not require

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

27

discretization of the reward function. The only

drawback of the proposed method is its false negative.

Fortunately, in a real-world honeypot environment, this

situation rarely occurs.

Other RL methods can be considered for future

research, especially Markov Decision Process (MDP).

Also, combining RL with metaheuristic techniques can

probably have a significant effect on speeding up the

algorithm.

Compliance with ethical standards

Informed consent: Informed consent was obtained

from all participants included in the study.

Conflict of interest On behalf of all authors, the

corresponding author states no conflict of interest.

Funding The authors did not receive support from any

organization for the submitted work.

Data Availability The datasets generated during and

analyzed during the current study are available in the

[data.mendeley.com/datasets/gxntkyyjvf/1] repository,

[DOI: 10.17632/gxntkyyjvf.1].

REFERENCES
[1] Tian, W., Du, M., Ji, X., Liu, G., Dai, Y. and Han,

Z., 2021. “Honeypot detection strategy against

advanced persistent threats in industrial internet

of things: a prospect theoretic game”. IEEE

Internet of Things Journal, 8(24), pp.17372-17381.

[2] Harikrishnan, V., Sanket, H.S., Sahazeer, K.S.,

Vinay, S. and Honnavalli, P.B., 2022. “Mitigation

of DDoS Attacks Using Honeypot and Firewall”.

In Proceedings of Data Analytics and Management

(pp. 625-635). Springer, Singapore.

[3] K. Sethi, Y. V. Madhav, R. Kumar, and P. Bera,

“Attention based multiagent intrusion detection

systems using reinforcement learning,” Journal

of Information Security and Applications, vol. 61,

p. 102923, 2021.

[4] Lopez-Martin, M., Carro, B., & Sanchez-

Esguevillas, A. (2020). “Application of deep

reinforcement learning to intrusion detection for

supervised problems”. Expert Systems with

Applications, 141, 112963.

[5] Alavizadeh, H., Jang-Jaccard, J., & Alavizadeh, H.

(2021). “Deep Q-Learning based Reinforcement

Learning Approach for Network Intrusion

Detection”. arXiv preprint arXiv:2111.13978.

[6] A. Pashaei, M. E. Akbari, M. Zolfy Lighvan, and

A. Charmin4, “A Honeypot-assisted Industrial

Control System to Detect Replication Attacks on

Wireless Sensor Networks”, Majlesi Journal of

Telecommunication Devices, Vol. 11, No. 3, pp.

155-160, 2022.

[7] Yang, Z., Liu, X., Li, T., Wu, D., Wang, J., Zhao,

Y. and Han, H., 2022. “A systematic literature

review of methods and datasets for anomaly-

based network intrusion detection”. Computers

& Security, p.102675.

[8] Imran, M., Haider, N., Shoaib, M. and Razzak, I.,

2022. “An intelligent and efficient network

intrusion detection system using deep learning”.

Computers & Electrical Engineering, 99, p.107764.

[9] Roy, S., Li, J., Choi, B.J. and Bai, Y., 2022. “A

lightweight supervised intrusion detection

mechanism for IoT networks”. Future

Generation Computer Systems, 127, pp.276-285.

[10] Teixeira, D., Malta, S. and Pinto, P., 2022. “A

Vote-Based Architecture to Generate Classified

Datasets and Improve Performance of Intrusion

Detection Systems Based on Supervised

Learning”. Future Internet, 14(3), p.72.

[11] Y. Liu, H. Wang, M. Peng, J. Guan, J. Xu, and Y.

Wang, “DeePGA: A privacy-preserving data

aggregation game in crowdsensing via deep

reinforcement learning,” IEEE Internet of Things

Journal, vol. 7, no. 5, pp. 4113–4127, 2020.

[12] Q. Xu, Z. Su, and R. Lu, “Game theory and

reinforcement learning based secure edge

caching in mobile social networks,” IEEE

Transactions on Information Forensics and

Security, vol. 15, pp. 3415–3429, 2020.

[13] Gupta, G.P., 2022. “Intrusion Detection

Framework Using an Improved Deep

Reinforcement Learning Technique for IoT

Network”. In Soft Computing for Security

Applications (pp. 765-779). Springer, Singapore.

[14] Praveena, V., Vijayaraj, A., Chinnasamy, P., Ali, I.,

Alroobaea, R., Alyahyan, S.Y. and Raza, M.A.,

2022. “Optimal Deep Reinforcement Learning

for Intrusion Detection in UAVs”. CMC-

COMPUTERS MATERIALS & CONTINUA, 70(2),

pp.2639-2653.

[15] Naghdehforoushha, M., Dehghan Takht Fooladi,

M., Rezvani, M.H., Gilanian Sadeghi, M.M., 2022,

“BLMDP: A New Bi-level Markov Decision

Process Approach to Joint Bidding and Task-

Scheduling in Cloud Spot Market”, Turk J Elec

Eng & Comp Sci, DOI: 10.3906/elk-2108-89.

[16] Ma, X., & Shi, W. (2020). “Aesmote: Adversarial

reinforcement learning with smote for anomaly

detection”. IEEE Transactions on Network Science

and Engineering, 8(2), 943-956.

[17] Sutton RS,”Barto AG. Reinforcement learning:

An introduction”. MIT press; 2018 Nov 13.

[18] P. Holgado, V. A. Villagrá, and L. Vazquez, “Real-

time multistep attack prediction based on

hidden markov models,” IEEE Transactions on

Dependable and Secure Computing, 2017.

[19] T. T. Nguyen and V. J. Reddi, “Deep

reinforcement learning for cyber security,” arXiv

preprint arXiv:1906.05799, 2019.

[20] Pashaei, A., Akbari, M. E., Lighvan, M. Z., &

Charmin, A. “Early Intrusion Detection System

Majlesi Journal of Telecommunication Devices Vol. 12, No. 1, March 2023

28

using honeypot for industrial control networks”.

Results in Engineering, 100576. (2022).

[21] B. Hu and J. Li, “Shifting deep reinforcement

learning algorithm towards training directly in

transient real-world environment: A case study

in powertrain control,” IEEE Transactions on

Industrial Informatics, 2021.

[22] Caminero, G., Lopez-Martin, M., &Carro, B.

“Adversarial environment reinforcement

learning algorithm for intrusion detection”.

Computer Networks, Vol. 159, 2019, pp. 96–109.

doi: 10.1016/j.comnet.2019.05.013.

[23] Suwannalai, Ekachai, and Chantri Polprasert.

“Network Intrusion Detection Systems Using

Adversarial Reinforcement Learning with Deep

Q-network”, 18th International Conference on

ICT and Knowledge Engineering (ICT&KE), 2020,

IEEE.

[24] PACHECO, Yulexis et SUN, “Weiqing.

Adversarial Machine Learning: A Comparative

Study on Contemporary Intrusion Detection

Datasets”, ICISSP, 2021. pp. 160-171.

[25] Ferrag MA, Shu L, Djallel H, Choo KK. “Deep

learning-based intrusion detection for

distributed denial of service attack in

Agriculture 4.0”. Electronics. 2021

Jan;10(11):1257.

[26] Sharafaldin I, Lashkari AH, Hakak S, Ghorbani

AA. “Developing realistic distributed denial of

service (DDoS) attack dataset and taxonomy”. In

2019 International Carnahan Conference on

Security Technology (ICCST) 2019 Oct 1 (pp. 1-8).

IEEE.

[27] Hussain, Y.S., 2020. “Network Intrusion

Detection for Distributed Denial-of-Service

(DDoS) Attacks using Machine Learning

Classification Techniques”.

[28] Kshirsagar, D. and Kumar, S., 2022. “A feature

reduction based reflected and exploited DDoS

attacks detection system”. Journal of Ambient

Intelligence and Humanized Computing, 13(1),

pp.393-405.

[29] M. A. R. Al Amin, S. Shetty, L. Njilla, D. K. Tosh,

and C. Kamhoua, “Online cyber deception system

using partially observable Monte-Carlo

planning framework,” in Proceedings of the

International Conference on Security and Privacy

in Communication Systems. Springer, 2019, pp.

205–223.

[30] K. Sethi, E. S. Rupesh, R. Kumar, P. Bera and Y.

V. Madhav, "A contextaware robust intrusion

detection system: a reinforcement learning-

based approach," International Journal of

Information Security, 2019.

[31] S. Otoum, B. Kantarci and H. Mouftah,

"Empowering Reinforcement Learning on Big

Sensed Data for Intrusion Detection," in

Proceedings of IEEE International Conference on

Communications (ICC), 2019.

[32] Veluchamy, S., & Kathavarayan, R. S. (2021).

“Deep reinforcement learning for building

honeypots against runtime DoS attack”.

International Journal of Intelligent Systems.

[33] S. Wang, Q. Pei, J. Wang, G. Tang, Y. Zhang, and

X. Liu, “An intelligent deployment policy for

deception resources based on reinforcement

learning,” IEEE Access, vol. 8, pp. 35 792–35 804,

2020.

[34] Dowling, S., Schukat, M., & Barrett, E. (2018,

September). “Using reinforcement learning to

conceal honeypot functionality”. In Joint

European Conference on Machine Learning and

Knowledge Discovery in Databases (pp. 341-355).

Springer, Cham.

[35] Dang QV, Vo TH. “Reinforcement learning for

the problem of detecting intrusion in a computer

system”. In Proceedings of Sixth International

Congress on Information and Communication

Technology 2022 (pp. 755-762). Springer,

Singapore.

[36] Zhao D, Wang H, Shao K, Zhu Y. “Deep

reinforcement learning with experience replay

based on SARSA”. In2016 IEEE Symposium

Series on Computational Intelligence (SSCI) 2016

Dec 6 (pp. 1-6). IEEE.

