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1.  INTRODUCTION 

The focus on multiple input multiple output (MIMO) systems in wireless communications stems from their notable 

attributes of high capacity and diversity gain. Extensive research has demonstrated that in scenarios where the fades 

between pairs of transmit and receive antenna elements are independent and identically distributed (i.i.d.), the capacity 

of a Rayleigh distributed flat fading channel exhibits almost linear growth with the minimum number of transmitter and 

receiver antennas [1]-[3]. The study in [3] additionally highlights that Rician fading can enhance the capacity of a 

multiple antenna system, particularly when the transmitter possesses knowledge of the Rice factor. Furthermore, 

findings in [4], [5] reveal that in Nakagami-m fading, the MIMO channel capacity experiences an increase as the fading 

parameters are elevated. 

To harness the benefits of MIMO systems, it is imperative that the receiver and/or transmitter possess access to 

channel state information (CSI). One prevalent method for determining MIMO CSI is through training-based channel 
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estimation (TBCE) [6], [7]. The selection of optimal training signals typically involves exploring the minimization of 

the mean square error (MSE) of the linear MIMO channel estimator. Existing literature suggests that the optimal design 

of training sequences for MIMO channel estimation is intricately linked to the statistical characteristics of the channel, 

such as the fading model and the channel noise model. 

While the Rayleigh model is commonly assumed for fading in many wireless communication systems, it is often 

conjectured that the MIMO channel fading follows a Rayleigh distribution. However, the Nakagami-m model proves to 

be a more suitable fit for the fading channel distribution. The Nakagami-m distribution fading model [8] stands out as 

one of the most versatile, demonstrating greater flexibility and accuracy in aligning with experimental data compared to 

Rayleigh, log-normal, or Rician distributions. This model is characterized by two parameters: the scale parameter and 

the shape parameter, denoted as 'm'. It incorporates the Rayleigh distribution when 'm' equals 1 and the one-sided 

Gaussian distribution when 'm' equals 1/2. Considered a versatile statistical distribution, Nakagami-m accurately models 

a variety of fading environments. 

Various studies, including [4], [5], and [9], have delved into the modeling of Nakagami fading in MIMO channels. 

The challenge lies in determining the parameter 'm' during the estimation of the Nakagami probability density function 

(pdf). To effectively utilize the Nakagami-m distribution for modeling a given set of empirical data, it becomes necessary 

to ascertain or estimate the shape parameter from the data. The receiver, for optimal signal reception in Nakagami fading, 

also requires knowledge of this shape parameter. Different methods can be employed to estimate the required knowledge 

of channel statistics. 

For example, in [10], the problem of estimating the Nakagami 'm' parameter is addressed using maximum likelihood 

(ML) estimation. In [11], a maximum a-posteriori (MAP) estimator is introduced for Nakagami-m fading parameter 

estimation. The derivation of the covariance matrix for correlated Nakagami-m fading channels is presented in [12]. 

Additionally, [13] introduces a copula-based method for estimating the Nakagami fading parameter in the received 

signal, which is subject to fading and contaminated by dependent noise. 

In [7], [14], the authors proposed shifted scaled least squares (SSLS) and minimum mean square error (MMSE) 

estimators for the estimation of Rician fading in MIMO channels. Subsequently, in [15], the correlation between the 

channel Rice factor and the Nakagami shape parameter is utilized to formulate the MIMO channel covariance matrix. 

As a result, the SSLS and MMSE estimators can leverage the knowledge of Nakagami channel statistics, leading to an 

improvement in their performance. Numerical findings affirm the suitability of both estimators for Nakagami MIMO 

channel estimation, with the MMSE channel estimator demonstrating superior performance compared to the SSLS and 

least squares (LS) estimators. However, it is noted that the SSLS and MMSE estimators in [15] are specifically effective 

for scenarios where 'm' is greater than 1. 

In this study, the MAP estimator is employed to estimate the Nakagami fading MIMO channel when 'm' is less than 

1. The joint pdf of the channel vector entries is derived by multiplying the pdfs of the entries, assuming the vector entries 

are uncorrelated. Although the MAP estimation result does not yield a closed-form estimator, it leads to a set of nonlinear 

second-order complex equations. An algorithm is utilized to solve these equations and estimate the channel. Numerical 

results indicate an enhancement in the performance of the MAP estimator with an increase in the Nakagami shape 

parameter. Even in the most challenging scenario, where 'm' equals 0.5, the results are superior to those of the LS 

estimator. 

The remainder of this paper is structured as follows: The next section introduces the system model of interest and 

outlines some assumptions regarding the fading process. Section 3 delves into the study of the MAP estimator. 

Numerical examples are presented in Section 4, while Section 5 serves as the conclusion for this paper. 

 

2.  THE SYSYEM MODEL 

We consider a MIMO system with n t transmitter and n r receiver antennas. The frequency-flat block fading model is 

assumed for the MIMO channel. It means that the channel response is fixed within one block and can vary from one block 

to another one randomly. Each transmitted block contains training and data symbols. The frame structure is the same for 

all Tx antennas. Training and data symbols are located at the beginning and the end of the blocks, respectively. In practice, 

the channel is estimated using training symbols in the training phase, which will be used for data detection. To estimate 

the MIMO channel in each block, it is required that n p ≥ n t training signals are transmitted by each transmitter antenna. 

The n r × n p complex received signal matrix can be expressed as 
 

𝐘 = 𝐇𝐗 + 𝐕,                                                               (1) 
 

where X and V are the complex n t -vector of transmitted sequences on the n t transmit antennas and n r -vector of additive 

noise, respectively, and H is the n r × n t channel matrix. The elements of noise matrix are i.i.d. complex Gaussian random 

variables with zero mean and the variance 𝜎𝑛
2 (i.e., CN (0, 𝜎𝑛

2)). The MIMO channel model (1) can be expressed in the 

following vector form: 
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𝐲 = �̃�𝐡 + 𝐯                                                                 (2) 
                                                                                                                                                               

where y = vec (Y), v = vec (V), 𝐗 = 𝐗𝑇  𝐈𝑛𝑟
, and  h = vec (H). The notation (٠) T is reserved for the matrix transpose, 

  for the Kronecker product. 𝐈 𝑟 denotes the r ×  r identity matrix. The operand vec (٠) stacks all the columns of the 

matrix argument into one tall column vector.     

The entries of the channel matrix H in (1) or the vector h in (2) are assumed to be complex random variables with 

the following general form 
 

h𝑖𝑗 = RejΘ                                                                   (3)                                                                                                                                 
 

where R is the envelope and Θ is the phase. The Nakagami-m fading envelope R has the following pdf [8] 
 

𝑓R(𝑟) =
2(

𝑚

Ω
)

𝑚
𝑟2𝑚−1

𝛤(𝑚)
exp (−

𝑚

Ω
𝑟2) ;     𝑟 ≥ 0 , 𝑚 ≥ 0.5  

                                                                                    (4) 
                                                                                                          

      Where Ω = E[R2] is the expected value of the average power, and 𝑚 = Ω2/V[R2] is the shaping parameter which 

controls the shape of the distribution, and E[R2] and V[R2] respectively denote the expectation and variance of R2.  

In (4), Γ(·) is the gamma function as follows 
 

𝛤(𝑚) = ∫ 𝑥𝑚−1 𝑒−𝑥 𝑑𝑥
+∞

0
                                         (5)                                                                                                                       

 

The mean and variance of R can be written as follows:  
 

E[R] =
𝛤(𝑚+1/2)

𝛤(𝑚+1)
√

Ω

𝑚
                                                    (6) 

 

V[R] = Ω (1 −
1

𝑚
(

𝛤(𝑚+1/2)

𝛤(𝑚+1)
)

2

)                                   (7) 

 

      The k-th moment of the Nakagami-m distribution is given by [10] 
 

E[R𝑘] =
𝛤(𝑚+𝑘/2)

𝛤(𝑚)
(

Ω

𝑚
)

𝑘/2

                                            (8) 

 

In (3), the phase Θ is assumed to be uniformly distributed as follows:  

 

𝑓𝛩(Ɵ) =
1 

2𝜋
 ,        − 𝜋 ≤  Ɵ ≤ 𝜋                                  (9) 

 

The Nakagami-m distribution covers a wide range of fading conditions. For example, when m=0.5, it is reduced to 

a one-sided Gaussian distribution and when m=1, it is reduced to a Rayleigh distribution. In the limit when m→ ∞, the 

channel becomes static, and its corresponding pdf becomes an impulsive function located at √Ω. For m < 1, the fading 

is more severe than the Rayleigh fading, and for values of m > 1, the fading is less severe. For the values of m > 1, the 

Nakagami-m distribution closely approximates the Rician distribution [15]. In the rest of the paper, we assume that m<1, 

unless otherwise specified. 

 

3.  MAP CHANNEL ESTIMATION 

We assume that channels between each pair of transmit and receive antennas, i.e., hij’s, are independent. Therefore, 

the joint pdf of the entries of h is computed by multiplying the pdfs of the entries using (4) and (9) as 

 
 

𝒑(𝐡) = C ∏ ∏ |ℎ𝑖𝑗|
2(𝑚−1)𝑛𝑡

𝑗=1  exp (−
𝑚

Ω
∑ ∑ |ℎ𝑖𝑗|

2𝑛𝑡
𝑗=1

𝑛𝑟
𝑖=1 )

𝑛𝑟
𝑖=1                         (10) 

 

 

     Where C = (𝑚𝑚/𝜋 Ω𝑚 𝛤(𝑚))
𝑛𝑟 𝑛𝑡

 and ℎ𝑖𝑗 , 𝑖 = 1, 2, … , 𝑛𝑟; 𝑗 = 1, 2, … , 𝑛𝑡   are the elements of the channel matrix H in 

(1). The conditional pdf can be computed as 

 
 

𝒑(𝐲|𝐡) =
1

𝜋𝑛𝑟 𝑛𝑡 det (𝐂𝐕)
 𝑒𝑥𝑝 (−

1

𝜎𝑛
2  ∑ ∑ |𝑦𝑖𝑗−𝑧𝑖𝑗|

2𝑛𝑡
𝑗=1

𝑛𝑟
𝑖=1 )                                 (11) 
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     Where 𝜎𝑛
2 is the variance of the elements of additive receiver noise matrix V in (1), 𝐂𝐕 is the covariance matrix of the 

elements of the vector v in (2), 𝑦𝑖𝑗 , 𝑖 = 1, 2, … , 𝑛𝑟; 𝑗 = 1, 2, … , 𝑛𝑡 are the elements of the received signal matrix Y  in 

(1),  𝑧𝑖𝑗 = ∑ ℎ𝑖𝑛 𝑥𝑛𝑗
𝑛𝑡
𝑛=1 , 𝑖 = 1, 2, … , 𝑛𝑟;   𝑗 = 1, 2, … , 𝑛𝑡, and 𝑥𝑖𝑗 , 𝑖, 𝑗 = 1, 2, … , 𝑛𝑡 are the elements of the training matrix 

X in (1).  

In MAP, the channel is estimated in order to maximize 𝒑(𝐡) 𝒑(𝐲|𝐡) as follows: 
 

�̂�𝑀𝐴𝑃 = argmax
𝐡

 (𝒑(𝐡) 𝒑(𝐲|𝐡)),                                (12) 

 

or equivalently, 
 

�̂�𝑀𝐴𝑃 = argmax
𝐡

 (ln 𝒑(𝐡) + ln 𝒑(𝐲|𝐡)).                     (13) 

 

      Using (10), (11) and by differentiating ln 𝒑(𝐡) + ln 𝒑(𝐲|𝐡) with respect to ℎ𝑘𝑙 , 𝑘 = 1, 2, … , 𝑛𝑟;                 𝑙 =
1, 2, … , 𝑛𝑡 and setting the results equal to zero, 𝑛𝑟𝑛𝑡 complex second-order equations are obtained as  
 

−(𝑚 − 1) +
𝑚

Ω
 |ℎ𝑘𝑙|2 − (∑ 𝑥𝑙𝑗𝑦

𝑘𝑗

𝑛𝑡

𝑗=1

)  ℎ𝑘𝑙 

− ∑ ∑ 𝑥𝑙𝑗𝑥𝑛𝑗

𝑛𝑡

𝑛=1
𝑛≠𝑙

𝑛𝑡

𝑗=1

ℎ𝑘𝑛ℎ𝑘𝑙 + (∑|𝑥𝑙𝑗|
2

𝑛𝑡

𝑗=1

) |ℎ𝑘𝑙|
2 = 0 

 

𝑘 = 1, 2, … , 𝑛𝑟;    𝑙 = 1, 2, … , 𝑛𝑡                               (14) 
 

      Where  (. ) denotes the complex conjugate. Assuming that a training matrix X with orthogonal rows is used here, we 

have 

 

∑ 𝑥𝑙𝑗𝑥𝑛𝑗
𝑛𝑡
𝑗=1 = 0            𝑓𝑜𝑟 𝑙, 𝑛 = 1,2, … , 𝑛𝑡             (15) 

 

      Using (15), it is straightforward to show that under orthogonal training for the MAP estimator, (14) reduces to 
 

𝑎𝑙|ℎ𝑘𝑙|
2 − 𝑏𝑘𝑙  ℎ𝑘𝑙 − (𝑚 − 1) = 0  

 
 

𝑘 = 1, 2, … , 𝑛𝑟;     𝑙 = 1, 2, … , 𝑛𝑡                              (16)  
                                                    

     Where, 
 

𝑎𝑙 =
𝑚

Ω
+ ∑ |𝑥𝑙𝑗|

2𝑛𝑡
𝑗=1 ,                                                  (17) 

 

𝑏𝑘𝑙 =  ∑ 𝑥𝑙𝑗𝑦
𝑘𝑗

𝑛𝑡
𝑗=1                                                      (18) 

 

      Generally, the second-order equations of (16) have two roots for any k, l. The roots that maximize the function 

𝒑(𝐡) 𝒑(𝐲|𝐡) are chosen. Suppose ℎ𝑘𝑙 = ℎ𝑘𝑙 𝑅
+ 𝑗ℎ𝑘𝑙 𝐼

, where ℎ𝑘𝑙𝑅
 is the real part of ℎ𝑘𝑙  and ℎ𝑘𝑙𝐼

 is the imaginary part 

of ℎ𝑘𝑙 . Also, suppose 𝑏𝑘𝑙 = 𝑏𝑘𝑙 𝑅
+ 𝑗𝑏𝑘𝑙𝐼

, where 𝑏𝑘𝑙𝑅
 is the real part of 𝑏𝑘𝑙  and 𝑏𝑘𝑙𝐼

 is the imaginary part of 𝑏𝑘𝑙 . 

Substituting them in (16) and with some calculations, for 𝑘 = 1, 2, … , 𝑛𝑟;   𝑙 = 1, 2, … , 𝑛𝑡 we will have 
 

𝑑𝑘𝑙  (ℎ𝑘𝑙 𝑅
)

2
+ 𝑒𝑘𝑙  ℎ𝑘𝑙 𝑅

− (𝑚 − 1) = 0,                   (19) 
 

                                

ℎ𝑘𝑙 𝐼
= −ℎ𝑘𝑙 𝑅

 
𝑏𝑘𝑙𝐼

𝑏𝑘𝑙𝑅

  .                                                  (20) 

 

      Where, 
 

𝑑𝑘𝑙 = 𝑎𝑙 (1 + (
𝑏𝑘𝑙𝐼

𝑏𝑘𝑙𝑅

)
2

) , 𝑒𝑘𝑙 = − (𝑏𝑘𝑙 𝑅
+

(𝑏𝑘𝑙𝐼)
2

𝑏𝑘𝑙𝑅

).  (21)                                                                                 
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In order to estimate the channel matrix H, We use Algorithm 1, as follows: 
 

Algorithm 1: The MAP estimation’s steps. 
Step 1: Solve the second order equation (19) for 𝑘 = 1 and 𝑙 = 1, 2, … , 𝑛𝑡 (there are two roots for any 𝑘, 𝑙, generally) 

Step 2: Calculate (20) for 𝑘 = 1, 𝑙 = 1, 2, … , 𝑛𝑡 and for both roots of (19) 

Step 3: Calculate ℎ𝑘𝑙 = ℎ𝑘𝑙𝑅 + 𝑗ℎ𝑘𝑙𝐼 for 𝑘 = 1 and            𝑙 = 1, 2, … , 𝑛𝑡 and for both roots of (19) 

Step 4: Calculate the function 

𝑓(𝑘) = ∑ 𝑙𝑛|ℎ𝑘𝑗|
2(𝑚−1)𝑛𝑡

𝑗=1 −
𝑚

Ω
∑ |ℎ𝑘𝑗|

2𝑛𝑡
𝑗=1 − ∑ |𝑦𝑘𝑗−𝑧𝑘𝑗|

2𝑛𝑡
𝑗=1   

for 2𝑛𝑡 combinations of roots obtained in step 3 and choose a combination of roots that maximizes 𝑓(𝑘) 

Step 5: Repeat steps 1-4 for 𝑘 = 2, … , 𝑛𝑡 

 

In Step 4 of the Algorithm 1, we are using the following relation 
 

ln 𝒑(𝐡) + ln 𝒑(𝐲|𝐡) = ln C + ln B + ∑ 𝑓(𝑘)𝑛𝑡
𝑘=1                    (22) 

 

      Where B = 1/𝜋𝑛𝑟 𝑛𝑡 det (𝐂𝐕), and B, C are independent of ℎ𝑘𝑙 .  

 

4.  SIMULATION RESULTS 

In this section, the performance of the MAP estimator is numerically evaluated. To measure the accuracy of the 

channel estimation, we use the normalized mean square error (NMSE) defined as follows 
 

2

2

ˆ{|| || }

{|| || }

F

F

E
NMSE

E




h h

h
                                                           (23) 

 

For simulations, we generate samples of MIMO channels using the Nakagami-m distribution. For the training 

sequences, we use the orthogonal sequences proposed in [6] ad [7]. For each signal-to-noise ratio (SNR), we run 5000 

simulations and average find the NMSE using (23).  

Fig. 1 shows NMSE of the LS estimator [10] and the MAP channel estimator (algorithm 1) with orthogonal training 

versus signal to noise ratio (SNR) for various Nakagami shape parameters when n r= n t=1. As it is expected, the LS 

estimator can not exploit the knowledge of m, a phenomenon that is confirmed in [15]. In [6], [7] and [15] it was shown 

that the LS estimator does not require any knowledge of the channel and that the performance of the LS estimator is 

independent of the channel shape parameter, m, and the correlation coefficients. Here, we use the LS estimator as a 

benchmark for comparison. It is observed that one-sided Gaussian distribution (m = 0.5) is the worst case for the MAP 

estimation, however, the result is still better than LS estimation. Moreover, by increasing m the performance of the MAP 

estimator improves, especially at low SNRs. 

Figs. 2 and 3 show the NMSE of the LS and MAP estimators for higher number of transmitter and receiver antennas. 

As can be seen, at high SNRs, the performances of the MAP estimator for different values of m are similar particularly 

for lower number of transmitter and receiver antennas. It is notable that in the special case of m = 1, i.e Rayleigh fading, 

the MAP estimator is the same as the MMSE estimator of [6] for low correlations.  

Figs. 4, 5, and 6 compare the NMSE of the MAP channel estimator versus SNR for various number of transmitter 

and receiver antennas when m=0.5, m = 0.75, and m=1, respectively. As expected, increasing the number of transmitter 

and receiver antennas results in higher channel estimation error. 

 

 
 

Fig. 1. NMSE of the LS and MAP estimators vs. SNR for various Nakagami shape parameters and  𝑛𝑟 = 𝑛𝑡 = 1. 
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Fig. 2. NMSE of the LS and MAP estimators vs. SNR for various Nakagami shape parameters and  𝑛𝑟 = 𝑛𝑡 = 2. 

 
 

 
 

Fig. 3. NMSE of the LS and MAP estimators vs. SNR for various Nakagami shape parameters and  𝑛𝑟 = 𝑛𝑡 = 3. 

 
 

 
 

Fig. 4. NMSE of the MAP estimator vs. SNR for various number of antennas 𝑛𝑟 = 𝑛𝑡 and m = 0.5. 



Majlesi Journal of Telecommunication Devices                        Vol. 13, No. 1, March 2024 
 

7 

 

 
 

 

Fig. 5. NMSE of the MAP estimator vs. SNR for various number of antennas 𝑛𝑟 = 𝑛𝑡 and m = 0.75. 

 

 
 

Fig. 6. NMSE of the MAP estimator vs. SNR for various number of antennas 𝑛𝑟 = 𝑛𝑡 and m = 1. 

 

5.  CONCLUSIONS 

This paper introduces the MAP estimator for estimating Nakagami fading in uncorrelated MIMO channels with m 

< 1. The proposed approach yields a set of second-order nonlinear equations characterized by complex coefficients. An 

algorithm is employed to solve these equations and obtain the channel coefficients. As anticipated, an increase in the 

Nakagami shape parameter contributes to an enhancement in channel estimation accuracy. Remarkably, the MAP 

estimation results outperform classical LS estimation, even under severe fading conditions, such as when m=0.5. In the 

special case where m=1, corresponding to the Rayleigh fading model, the MAP approach presented in this paper aligns 

with the MMSE technique from [6] for uncorrelated channel scenarios. It is noteworthy that for m > 1, the channel 

follows a Rician distribution and experiences less severe fading. Previous work in [15] has addressed the estimation of 

this channel type, and the results align with the findings presented in this article. Nakagami fading is recognized as a 

suitable model for wireless environments, with the Nakagami-m distribution often providing the best fit for land-mobile 

and indoor-mobile multipath propagation. 
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