
Majlesi Journal of Telecommunication Devices                                                                 Vol. 11, No. 2, June 2022 

 

95 
Paper type: Research paper  

DOI: https://doi.org/ 10.30486/mjtd.2022.695920 

How to cite this paper: Sh. Mousavi, N. Habibi, “A Survey on Applications of Machine Learning in Bioinformatics and 

Neuroscience”, Majlesi Journal of Telecommunication Devices, Vol. 11, No. 2, pp. 95-111, 2022. 

 

A Survey on Applications of Machine Learning in 

Bioinformatics and Neuroscience 

 
Shahla Mousavi1, Narges Habibi2* 

1- Faculty of Engineering, Khorasgan Branch, Islamic Azad University, Isfahan, Iran. 

Email: shahla.mousavi@khuisf.ac.ir 

2- Department of Computer Engineering, Faculty of Engineering, Khorasgan Branch, Islamic Azad University, Isfahan, Iran. 

Email: N.habibi@khuisf.ac.ir (Corresponding author) 

 
Received: January 2022      Revised: March 2022  Accepted: May 2022 

 
 
ABSTRACT: 
Machine learning is one of the most practical branches of artificial intelligence that tries to provide algorithms by 

which the system can analyze a set of data in different formats. Machine learning algorithms are widely used in 

biomedicine, bioinformatics and neuroscience. The main goal of this paper is to propose the latest applications of 

machine learning in bioinformatics and neural imaging and to introduce new branches of research. In this article, the 

application of four indicators of machine learning techniques in the field of bioinformatics is examined. The four 

categories of techniques studied include clustering, classification, dimensionality, and deep learning. In this paper, we 

also show that machine learning techniques can be successfully used to address common bioinformatics challenges 

such as gene expression, DNA methylation identification, mRNA expression, patient classification, brain network 

analysis, protein chain identification, clustering, and biomarker identification. In each section, some efficient articles 

with technical details are discussed separately. The results of some papers are also reported in terms of accuracy, 

database and techniques used. 
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1. INTRODUCION  

In the last two decades, the amount of biomedical 

data has increased dramatically. More than 90% of such 

data is collected by bioinformatics and neuroimaging 

laboratories. This data is usually generated in various 

forms such as genome, gene expression, protein 

structure, DNA data, and many functional imaging 

techniques in neuroscience. This large amount of data 

has made the need for effective computing tools to 

analyze them more than ever. Bioinformatics is an 

interdisciplinary field in which new computational 

methods are developed for the analysis of biological 

data and the discovery of new concepts [1]. In other 

words, in genetics and genomics, bioinformatics’ tools 

are used to find sequencing and annotation processes of 

genomes [2]. Bioinformatics also plays a key role in 

understanding and regulating gene and protein 

expression [3, 4]. Bioinformatics at the level of systems 

biology helps to list biological pathways and analyze 

the underlying networks of specific biological 

mechanisms [5, 6]. In neuroscience, different 

neuroimaging techniques, such as computed 

tomography (CT) scans, positron emission tomography 

(PET) scans, functional magnetic resonance imaging 

(fMRI), and diffusion tensor imaging (DTI), are used to 

understand brain function in vivo. One of the 

fascinating areas of research in this area is the analysis 

of the human brain network, often referred to as the 

human connection. The main purpose of this research 

sub-field is to understand the anatomical and functional 

organization of the brain. Understanding the brain's 

functional process is crucial for early detection of 

neurological disorders and increasing the effectiveness 

of treatment methods for this disease. 

Machine learning (ML) refers to techniques and 

methods that are able to learn from data for the purpose 

of predictive analysis. In other words, in many 

applications, machine learning is considered as the 

develop models to explain optimally data by tuning 

their specific settings. In other words, the main purpose 

of learning a machine is to extract knowledge from 

input data to predict new patterns that have not been 

seen before. In many references, machine learning 

algorithms are usually divided into the following three 

groups: 

 •Supervised [7] 
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 •Unsupervised [8] 

 •Semi-supervised [9] 

In supervised learning, each observation has a label 

(interest result). In these models, the main purpose is to 

design a model that can assign the labels to the related 

observations. If the data has no labels and the purpose 

is only to analyze how the data is structured and 

statistically, that model is defined as unsupervised 

learning. In the field of semi-supervised learning, it is 

possible to have labeled and unlabeled data in a same 

database. 

Machine learning algorithms and techniques have 

been widely used to solve problems in the field of 

bioinformatics and neural imaging. Most of researches 

in this field is devoted to bioinformatics and neural data 

mining, which analyzes various problems such as 

classification [10], clustering [11], network analysis [6] 

and dimensionality reduction [12]. The main purpose of 

this survey paper is to examine advanced approaches 

based on machine learning and their application in the 

fields of bioinformatics and neural imaging. Some 

effective methods are also discussed in more detail to 

suggest ideas for future research. 

 

1.1. Paper Organization  

This reminder of this paper is organized as follows: 

Section 2 discusses about the dimensionality reduction 

and feature selection techniques in the field of 

bioinformatics. In this subsection, univariate and 

multivariate methods are compared. Also, for each of 

the above two strategies, practical examples of feature 

selection methods are examined. Various applications 

such as biomarker prioritization, mononucleotide 

analysis, mutation analysis, detection of functional 

brain networks, and dimensional embedding of fMRI 

data are presented in this section. Section 3 discusses 

clustering techniques and their applications. Some 

examples of clustering are examined in more detail to 

identify genes co-expression. In addition, clustering 

applications for brain segmentation and feature 

extraction in fMRI data are also discussed. Section 4 

describes some of the most efficient supervised 

classification methods for drug repositioning, 

proteomic classification, patient classification of 

neuroimaging data, and multifaceted segmentation of 

the human cerebral cortex. Section 5 discusses the 

differences between deep learning and classical low-

deep neural networks. Examples of CNN applications 

in situ hybridization of RNA, DNA binding proteins, 

and predicting neural growth outcomes from the 

structural network of the brain are reviewed. The 

discussion and conclusion are in Section 6. 

 

2. FETURE SELECTION AND 

DIMENSIONALITY REDUCTION  

Bioinformatics and biomedical data usually 

extracted in high dimensions/features. Therefore, the 

use of a preprocessing step with the aim of reducing the 

size of the data, before performing any analysis, is 

strongly required. There are two main strategies for 

achieving this goal. First one is dimensionality 

reduction approaches. Second is feature selection 

technique. 

Dimension reduction methods involve converting a 

large data set into a low-dimensional representation so 

that most of the data information is still preserved. One 

of the simplest and most commonly used methods is 

principal component analysis (PCA), which involves a 

linear transformation that displays the original data in a 

new space where the variable with the highest variance 

in the first axis is displayed. Be, shows. The second 

variable with the highest variance is mapped to the 

second axis, and so on. 

In PCA technique, dimensional reduction is 

achieved only by considering the principal components, 

that is, it keeps a subset of the features that constitute 

the most variation in the data. One of the limitations of 

PCA is that it assumes that the data follow the Gaussian 

distribution, so it cannot be used for data that follow 

more complex distribution functions. While PCA is 

based on orthogonal conversion to obtain non-

correlated linear properties, the Independent 

Component Analysis (ICA) technique [13] is described 

based on identifying statistically independent 

components in the data. Some other approaches are 

based on factor analysis, projection pursuit, regression, 

and continuous topological mapping [14]. 

The main limitation of dimensional reduction 

techniques is that some information is inevitably lost in 

the process. They may also prevent interpretability in 

the case of irreversible (one-sided) maps that do not 

allow a return to the original representation. Feature 

selection methods may be preferred when the main 

problem is the need to remain key features. In feature 

selection methods, the main purpose is to select a low-

dimensional subset of high-dimensional data to reveal 

basic information. This group of techniques is also 

mainly used as a preprocessing step for other 

computational methods . Three different strategies are 

most used in this area and are commonly used: 

 Univariate or multivariate filtering methods 

  Embedded methods 

 Multivariate wrapper [12] 

In filter-based methods, features (attributes) are 

sorted ranked based on a predefined measure, then a 

percentage of the top-rated features are selected and the 

rest are discarded. These approaches are independent of 

the classifier. In univariate methods, each dimension 

(feature) is evaluated and ranked separately. Examples 

of univariate filters are the t-test, the χ2 test, or the 

Wilcoxon total rank [15, 16]. These approaches are 
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relatively fast because the computational complexity is 

linear based on the number of features. The main 

limitation of these methods is the lack of consideration 

for dependencies between features. To deal with this 

limitation, multivariate methods have been proposed 

that have the ability to separate groups of features and 

evaluate them together. These techniques are slower 

but more scalable than univariate methods (in this 

family, too, the number of possible subsets that can be 

extracted increases exponentially as the number of 

features increases). This group of methods does not 

depend on classification process at all. 

Examples of multivariate feature ranking 

approaches are Markov coating filters [17, 18] and fast-

correlation and correlation-based methods [19]. While 

filtering techniques identify the best features 

independently of the model selection stage, wrapping 

methods combine the model selection stage with a 

feature subset search. In fact, the goodness of each 

feature set is assessed by training and testing a specific 

classification model. In this method, the feature 

selection process is strongly related to the selected 

classifier, and compared to filtering methods, these 

methods are computationally more expensive and have 

a higher risk of over-fitting, but can generally achieve 

higher accuracy because Practically, from the 

beginning, the features are selected based on the same 

final criterion (classification accuracy). 

Greedy forward selection and backward elimination 

strategies are two popular examples of wrapping 

selection approaches [20, 21]. Embedded techniques 

for feature selection methods look for the optimal 

subset of features based on the classification accuracy. 

These methods search in the hybrid space of feature 

subsets and hypotheses. Like wrapping approaches, 

embedded techniques are strongly related to the 

classifier and the learning algorithm. Compared to the 

wrapper methods, they are less computationally 

compact. Examples of these applications are the use of 

random forest (RF) internal criteria such as mean 

reduction accuracy and Gini index or feature selection 

based on support vector machine (SVM) weights. Both 

univariate and multivariate approaches have the 

common goal of finding the smallest set of useful 

features to classify objects correctly. Accuracy and 

stability are the two main requirements for selecting a 

feature selection method. In last two decade, the main 

challenge in this area has been to find high-precision 

methods to improve discriminative potential of selected 

features. 

 

2.1. Feature Selection to Find the Biomarker of 

Diseases 

Identification of biomarkers for a disease is an 

important research area in bioinformatics. In most 

methods, they have to find a sub-set of features in 

different phases. Fortino et al., [22] proposed an 

envelope feature selection method that combines 

stochastic forest and fuzzy logic and offers a stable 

performance compared to other methods in this field. 

The proposed algorithm in [22] consists of three steps: 

 Gene expression data is converted into fuzzy 

patterns (FPs). This phase is called discretization. 

 Second phase, prior knowledge of FPs is used 

to train random forest and classify data. 

 In the third phase, the selected features are 

ranked by a permutation variable significance criterion. 

The method presented in this paper has been 

evaluated on several multi-class sets of gene expression 

and compared with several other RF-based methods 

[23]. Two criteria F and G (in 30 epochs) have been 

considered to evaluate the efficiency of the proposed 

method, which are especially suitable for unbalanced 

multi-class classification problems [24]. Performing 

iterations, subsets of efficient features have been 

selected, and the ratio between the number of 

compatible features and the total number of selected 

features has been considered as the final evaluation 

metric. Results show that the proposed system in [24] 

has similar or better results than other compared 

methods. 

 

2.2. Single Nucleotide Polymorphisms Analysis 

Methods 

SNPs are single-position nucleotide mutations that 

are produced by evolution and are inherited. The most 

genetic differences between individuals are SNPs. They 

play an important role in many studies related to 

disease based on genes. Because of the large number of 

SNPs in the genome [25], it is important to identify 

relevant subtypes of SNPs that are sufficiently 

discriminant to differentiate between patients. So far, 

several different methods have been proposed for 

selecting SNPs based on different criteria. For example, 

Charlon et al. [26] proposed a PCA-based algorithm to 

identify SNPs that are effective in diagnosing 

autoimmune diseases. Using several transform 

functions, they were able to maintain SNPs with the 

largest absolute prediction values in the 100 major 

components. A Gaussian mixture distribution function 

is set up for each one of the major component. The 

probability that each SNP belongs to each of the 

Gaussian functions is calculated, and based on the 

probability range obtained; the classification 

uncertainty can be calculated. Only strong participants 

have zero uncertainty, so SNPs with empty category 

uncertainty are selected. Researchers in [26] were able 

to classify SNPs with good accuracy. They were also 

able to reduce the effect of ancestral information, which 

is known as one of the main sources of genetic 

variation among individuals. 
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2.3. Independent Component Analysis for Brain 

Networks 

As mentioned above, in functional neuroimaging, 

due to the high dimensional of the data, the use of 

dimensionality reduction methods is essential. ICA 

methods are often applied to fMRI data with the aim of 

extracting spatially independent signal sources and 

detecting noise components [27-29].  

Given the time series associated with brain voxels, 

which are often represented by matrix structure, the 

ICA identifies a number of independent sources whose 

combined contributions produce the fMRI signal 

(Figure 1). Depending on the need for independent 

spatial patterns or time periods, we can distinguish 

between spatial and temporal ICAs. But spatial ICA is 

used a lot because there are more voxels in it. One of 

the most relevant applications of ICA is the 

identification of resting-state networks, that is, areas of 

the brain that are functionally connected when the brain 

is not engaged in a specific task. Six main networks can 

be distinguished: the default mode network, the visual 

network, the fronto-parietal network, the sensori-motor 

network, the auditory network, and the self-referential 

network [30] 

 

 
Fig. 1.  Component analysis process on FMRI data. 

 

2.4. Embedding fMRI Data in Low-Dimensional 

Space 

In 2020, Shen et al., [31] proposed a machine 

learning-based approach to the analysis of resting-state 

functional connection patterns in schizophrenia. The 

method presented in [31] uses several hybrid steps 

including a feature selection algorithm, dimensional 

embedding algorithm and self-organizing clustering. 

In the proposed method, resting functional networks 

are considered as points distributed in a high-

dimensional feature space, and the aim is to identify the 

spatiotemporal patterns associated with schizophrenia 

symptoms that are presumed to be located on a 

dimensional manifold embedded in the feature. 

 In the first step, functional connection 

networks are extracted from each subject and the 

correlation coefficient method is used to extract the 

most distinctive features. 

 In the second step, a dimensional step based 

on local linear embedding is applied [32] 

 In the third stage, K-means clustering is 

applied in a small space to identify two groups (patients 

versus healthy individuals) and the two obtained 

clusters are optimized to maximize the classification 

rate. 

The method proposed in [32], provided both high 

classification accuracy and good generalization ability 

together. This article is an example of the ability of 

machine learning to diagnose and evaluate the 

treatment of schizophrenia. 

 

2.5. Feature Selection in Sequence Analysis  

As mentioned in the introduction, sequence analysis 

of genomes and proteins is an important issue in 

bioinformatics. Usually, two types of challenges can be 

identified in terms of feature selection: content analysis 

and signal analysis. 

Content analysis can be performed on the broad 

features of a sequence, such as the tendency to encode 

in a protein sequence or to perform a specific biological 

function. But signal analysis focuses on identifying 

important motifs in the sequence, such as gene 

structural elements or regulatory elements. Apart from 

the basic properties that show only nucleotides or 

amino acids in each position in a sequence, many other 

properties can be derived, such as the higher order 

compositions of these building blocks, the number of 

which increases exponentially. Since many of them are 

unrelated or redundant, attribute selection techniques 

are applied to focus on the effective subset of variables 

. 

2.5.1. Content analysis 

Predicting protein sequences has long been an 

important issue in bioinformatics. Because many 

properties can be derived from a sequence, and most 

dependencies occur between adjacent situations, 

Markov models are widely used. To deal with the large 

number of features and the number of samples, the 

Markov model of interpolation (IMM) was introduced 

by Delcher et al. [33], which used interpolation 

between different levels of the Markov model to deal 

with small samples. In another study, Delcher et al. 

[33] extended the IMM framework to deal with non-

adjacent feature dependencies, leading to the 

Interpolation Tissue Model (ICM), which uses the 

Bayesian decision tree by filtering crosses. 

Another class of methods focuses on predicting 

protein function by sequencing. One of the influential 

articles in this group is [34] which combines a genetic 

algorithm in combination with a gamma test to score 

feature subsets to classify large rRNA subunits. An 

interesting technique [35] using selective core scaling 

for support vector machines (SVMs) is presented as a 

way to evaluate feature weights and eliminate low 

weight features. In last years, new applications are 

defined in the sequence analysis field which uses 

variation feature selection (FS) techniques such as 

promoter regions [35] and microRNA recognition [36]. 
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2.5.2. Signal analysis 

Many sequence analysis methods involve 

identifying short or protected signals in the sequence. 

These type of signals mainly indicate the binding sites 

of different proteins or protein complexes. A common 

approach to finding regulatory motifs is to relate the 

motifs to gene expression levels using regression 

techniques. You can then use the feature selection to 

search for motifs that best fit the regression model [37-

38]. In [39], a classification-based approach has been 

proposed to find differentiation patterns. This method is 

inspired by the paper [40] which uses the wrong 

classification threshold number (TNoM, in the section 

on microarray analysis) to score genes for correlation 

with tissue classification. From the TNoM score, a 

value of P is calculated, which indicates the importance 

of each motif. The motifs are then sorted by P-value 

Another part of the research is done on gene 

prediction settings. In these cases, structural elements 

such as translation starting point (TIS) and link 

locations can be considered as different classification 

problems. The issue of feature selection for the 

recognition of structural elements was raised in [41]. 

For the junction prediction problem, combining a 

sequential back method with an embedded SVM 

evaluation criterion was used to evaluate the feature 

association. 

 

3. CLUSTERING 

The term clustering in machine learning means 

cluster analysis of unsupervised data that is able to 

identify structures of data without prior knowledge of 

their distribution. Clustering is a strategy used to group 

a set of objects in such a way that the patterns of a 

group (called a cluster) are more similar to each other 

than the patterns in other clusters. The results of 

clustering strongly depend on the similarity criterion 

adopted. Choosing the best similarity criterion is just 

one of the considerations in this area. So far, many 

different clustering algorithms have been proposed. 

Here we review some of the most popular and practical 

algorithms in the field of biomedicine and review 

examples of applications. 

 

3.1. Portioning Clustering 

Some clustering algorithms use partitioning 

strategy. In all of them, the main goal is to obtain a 

partition of the data where each point belongs to a 

unique cluster. Hartigan and Wong [42] introduced one 

of the most well-known clustering algorithms, known 

as K-means. If we assume that X = {x1,…., Xn} is a set 

of N points in a multidimensional space and K is an 

integer value, then the K-means method try to find a set 

of K vectors µk, which minimize the within cluster sum 

of squares (WCSS). 

 

𝑊𝐶𝑆𝑆 = ∑ 𝑘 ∑ 𝑑(𝑥𝑖 , 𝜇ℎ)   (1)
𝑥𝑖∈𝑐ℎℎ=1

 

 

In the above equation, Ch represents the cluster h 

and consequently µh is the center of the cluster h. d(x, 

y) also shows the distance between the two vectors x 

and y. The K-means algorithm works well on some 

practical problems. The K-means method provides 

better performance in cases where the clusters are 

produced in a hyper-spherical shape and their variance 

is less. Its main limitations are the possibility of getting 

stuck in local minima during the optimization process, 

sensitivity to initial starting points and sensitivity to 

noise. Another problem with the K-means algorithm is 

that the number of clusters is constant during the 

process. While this parameter is unknown in most 

databases and should be estimated using clustering 

analysis. This is a problem for some other partitioning 

methods as well. Many efforts have been made to 

overcome the limitations of K-means clustering. Some 

of these versions are described in detail in [43]. 

 

3.2. Hierarchical clustering 

Hierarchical clustering strategy is one of the most 

common clustering approaches that are widely used to 

identify data structures in bioinformatics. Hierarchical 

methods usually produce a hierarchical tree (called a 

dendrogram) which includes a hierarchical, nested and 

related set of partitions. By cutting the dendrogram at a 

certain level, the partition of that level converts to K 

number of discontinuous clusters. Depending on the 

method used to create the cluster distance 

measurement, the clustering results may be different. 

For example, single linkage technique merges clusters 

that have the closest distance between two pairs of 

samples in each cluster. The complete linkage 

technique merges the clusters based on the farthest 

distance between a sample pair. This method is 

effective for compact clusters with unconventional 

structures. The center linkage technique calculates the 

Euclidean distance squared between the cluster centers. 

However, this method assumes that the data can be 

represented in Euclidean space. Hierarchical clustering 

has been widely used in bioinformatics and neural 

imaging applications. For example, [44] used this 

method to identify gene patterns that differentiate 

breast cancer subclasses. Examples of applications of 

hierarchical clustering in gene expression analysis are 

discussed in [44]. In the field of neuroimaging, 

hierarchical clustering has been used to measure 

binding in fMRI resting state data [45] and to construct 

a brain atlas [46]. A hierarchical method for sequencing 

microbiomes including RNA and DNA [47] is also 

proposed. 

 

 



Majlesi Journal of Telecommunication Devices                                                                 Vol. 11, No. 2, June 2022 

 

100 

 

3.3. Combinational Methods 

Combined methods usually provide an algorithm 

that has a hierarchical structure but in some cases 

partitioning is done and the whole data is seen in a 

unique space. This group of algorithms is also used in 

bioinformatics due to their combined nature. For 

example, it has been used to identify molecular 

properties [48], clustering gene partners, discovering 

molecular pathways in PPI networks [49]. It has been 

used in neuroinformatics for clustering and 

quantification of fiber device data [50] and for time 

series clustering [51]. 

 

3.4. Clustering based on Density Function  

Density-based clustering strategy assumes that 

clusters are represented by dense regions of points in 

the data space that are separated by less density 

regions. The most famous density-based clustering 

algorithm is the DBSCAN method proposed by Ester et 

al. [52]. The optimal performance of this algorithm 

depends on two parameters: the distance threshold (ε) 

and the minimum number of objects to form a cluster 

(minPts). In the first step, neighbors are first found 

anywhere less than ε. In the following, points with 

more neighbors than minPts are called principal points. 

. Then, by navigating the adjacent diagram, the 

components connected to the main points are identified. 

Finally, if a neighbor cluster is ε, each non-principal 

point is assigned to the nearest cluster. If the cluster is 

not a neighbor ε, that point is considered as a noise 

sample. The DBSCAN method has several advantages 

over the partitioning strategy: it does not need to 

specify the number of retrieval clusters, it can find 

clusters of various shapes (not just Gaussian), and it is 

resistant to outliers and data samples. In particular, this 

clustering algorithm is widely used in the fields of 

bioinformatics and neuroscience [53-55]. 

 

3.5. Clustering based on Spectral Analysis 

Most spectral clustering algorithms in the first step 

use the spectrum (eigenvalues and eigenvectors) of 

similarity matrices to reduce the dimensions of the data. 

Objects are then clustered in a space with lower 

dimensions. The similarity matrix in this strategy is a 

matrix in which each element, such as Ai,j, represents 

the similarity between samples i and j. The strategy is 

to compute the associated Laplace matrix and then 

apply the clustering method only to the corresponding 

special vectors. One of the most common algorithms in 

this field has been proposed by Meila and Shi [56] in 

which clustering is performed on special vectors 

associated with the highest eigenvalues of the 

normalized Laplace matrix. Spectral clustering has 

many applications in bioinformatics. For example, 

building protein fragments libraries [57], multi-view 

clustering of patients subtyping [58], DNA methylation 

study [59] and so on. In the field of neural image 

analysis, resting state imaging has recently been used to 

identify biomarkers in autism spectrum disorder. In 

addition, it has been used to identify time-varying 

networks for magnetic resonance imaging data [60]. 

3.6. Fuzzy clustering 

Unlike most clustering strategies, in fuzzy 

clustering methods, samples can belong to more than 

one single cluster. In fact, a membership point is 

assigned to each data point for each cluster. Therefore, 

the edge points of a cluster (with a lower degree of 

membership) may belong to the same cluster to a lesser 

extent than the center points of the cluster. The most 

common method of fuzzy clustering is fuzzy c-means 

algorithm, which acts exactly like K-means, except that 

it adds membership values to the objective function. 

Fuzzy clustering has been widely used in gene 

expression and clustering of gene expression networks 

[61, 62]. It has also been used in neuroimaging for 

different issues such as tumor segmentation [63], lesion 

diagnosis [64], and autoimmune brain segmentation 

[65]. 

 

3.7. Sub-space clustering  

As mentioned earlier, biomedical data usually are 

high-dimensional, so analyzing it often has problems 

such as visualizing data and reducing the accuracy of 

similarity criteria. Also in such a space, the complete 

count of all subspaces becomes insoluble. Also, due to 

the large number of features, it is possible that some 

features are related and this relationship is not 

statistically detectable. As a result, clusters may exist in 

arbitrary dependent subspaces. Subspace-based 

clustering is an extended version of traditional 

clustering that locates the search for the most 

informative dimensions. It also allows clusters to exist 

in multiple subspaces (overlapping). One of the main 

limitations of this strategy is that as the number of 

dimensions increases, the sub-spaces may increase 

exponentially by a factor of 2. Hence, some innovative 

algorithms have been developed that try to solve this 

problem by using the downward closure technique to 

create higher dimensional subspaces. Examples of these 

algorithms are CLIQUE [66] and SUBCLU. 

 

3.8. Application of Clustering in Clustering 

3.8.1. Co-Expressed genes identification based on 

clustering techniques 

The most widely used field of clustering in 

bioinformatics is its use in grouping genes in 

expression data. Gene expression is the process by 

which information encoded in genes is converted into 

active functional structures in the cell. Some evidence 

of gene activation has been presented in [1]. This 

activation is measured, for example, in next-generation 

microarray or sequencing (NGS) experiments. In 
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microarray articles, the expression value of thousands 

of genes is obtained in a set of samples [67], while in 

the NGS method, the whole genome is scanned, which 

allows new cases to be identified, but with a higher 

computational load than the previous type [68]. From 

this type of data, information of coexpressed genes can 

be extracted using clustering techniques. This is an 

example of a clustering application in which genes with 

the same expression level in all samples are grouped in 

a cluster. 

For the first time since the presentation of the paper 

by Alizadeh et al. [69], hierarchical clustering has been 

widely used in gene expression clustering. In a 

hierarchical strategy, there is no need for a predefined 

number of clusters to select. It is useful for 

visualization purposes because it computes a complete 

hierarchy of data displayed as a dendrogram [69]. It is 

then possible to determine the division of the beds in 

the clusters by cutting the dendrogram at a certain 

depth. The choice of height can be arbitrary and the 

efficiency of clustering accuracy varies according to its 

value. 

Another approach called PVClust [70] is proposed 

to solve this problem.In this paper, a classical 

hierarchical clustering approach is proposed that can 

evaluate the uncertainty in the analysis. For each 

cluster, it evaluates the value of p, which indicates how 

much the cluster is supported by the data. Pvclust is a 

freely available R package and it has been widely 

applied in many bioinformatics applications [71-73].  

Classical clustering methods, such as K-means, has 

also been widely used [74-76]. The main advantage of 

K-means is that it is simple and fast, but, unlike 

hierarchical clustering, K-means requires an initial 

determination of the number of clusters. Because the 

number of gene clusters is usually unknown in advance, 

this is considered a limitation. To identify the optimal 

number of clusters, K-means are usually performed for 

different values of k and then the clustering results are 

compared [77]. 

Each clustering algorithm that is applied to different 

datasets can offer different performance, so there is no 

definite choice between the algorithms described in this 

section. For example, if the data set contains numeric 

values and the number of clusters is known, K-means 

or SOM may work better than other methods. For high-

noise gene expression datasets without any prior 

knowledge of the number of clusters, CAST or CLICK 

algorithms may work best. 

In all clustering methods, the clusters must be 

validated when they are obtained independently of the 

applied algorithm. In the validation process, the quality 

and reliability of the clusters are evaluated. Clustering 

validation can be done in terms of homogeneity, when 

objects in the same cluster are closer to each other than 

those in different clusters [78]. In addition, the cloning 

of gene expression can be examined from a biological 

perspective. For example, Tavazoie, et al., [79] created 

a mapping of genes in each cluster resulting in 199 

known functional categories. For each cluster, p values 

were calculated to measure functional group 

enrichment.  

 

3.8.2. Patient subtypes identification based on 

clustering 

In many diseases - for example, cancer, 

neuropsychiatric disorders and autoimmunity - it is 

difficult to provide definitive treatment due to the wide 

variety of symptoms of patients [80]. The exact medical 

solution tries to solve this problem by personalizing the 

medical operation. In order to increase the accuracy of 

predicting disease progression and determining the 

most appropriate medical treatments, these methods 

take into account the diversity and differences of 

people in different terms such as genes, DNA, lifestyle 

and environment [81]. In precision medicine, patient 

sub-typing plays an important role. In this field, the 

main goal is to identify sub-populations of similar 

patients that can lead to more accurate diagnostic and 

treatment strategies. Identifying subtypes of diseases 

helps both medical science and the efficiency of 

surgery. In fact, from a clinical point of view, 

correcting the prognosis for similar individuals can 

reduce the uncertainty about the expected outcome of 

treatment for each individual. Recently, methods based 

on data integration approaches for detecting patient 

subtypes using supervised classification and 

unsupervised clustering have been proposed [82-84]. 

To improve the accuracy of the model for patient 

classification, bioinformatics data can be used, such as 

miRNA expression, methylation, or changes in RNA 

copy number and gene expression. For example, 

somatic copy number changes provide good biomarkers 

for cancer subclassification [85]. Data integration 

approaches to effectively identify subgroups among 

existing examples have recently been considered. The 

basic idea is based on the assumption that identifying 

groups of samples that share relevant molecular 

properties is the most influential factor. 

For example, SNF is an intermediate integration 

network fusion method, which is able to collect 

multiple genomic properties such as DNA methylation, 

mRNA expression, and miRNA expression data, to 

identify relevant patient subtypes. 

A late integration methodology for classify patient 

subtypes in cancer data-sets called MVDA is proposed 

in [86]. The approach consists of four main phases: 

 Step 1: The prototype extracted is a sample in 

which features are clustered to reduce the size of the 

data. 

 Step 2: prototypes are ranked, based on their 

class resolution scores. 



Majlesi Journal of Telecommunication Devices                                                                 Vol. 11, No. 2, June 2022 

 

102 

 

 Step 3: single-view clustering in each view 

 Step 4: The last case is the integration of 

single-view clustering results with the matrix 

factorization approach. 

  

3.8.3. Application of clustering in fMRI data 

analysis 

Functional neuroimaging data include volumetric 

images of the brain that are extracted over time. This 

type of data can describe brain activity. Clustering 

methods on raw time series data are used to identify 

areas of the brain that have similar functional patterns 

[87]. However, as the spatial and temporal resolution of 

the existing data set increases, the efficiency of this 

approach decreases, which can be measured by the 

signal-to-noise ratio criterion (this criterion describes 

raw time series data). In this regard, another method is 

to use clustering methods to identify structures in the 

data, after pre-processing the raw time series [88]. An 

example of this is the use of clustering techniques on 

spatial maps derived from the analysis of independent 

components on resting fMRI data [74]. Most methods 

that follow this approach cluster voxels using the 

Pearson correlation coefficient. The quality of the 

generated clusters is low in some issues, so in some 

methods different partitions are combined in a final 

clustering to increase the clustering efficiency of 

individual data. 

 

4. CLASSIFICATION   

In machine learning science, classification is one of 

the key issues of supervised-learning methods. In other 

words, classification means mapping one of the default 

possible variables to an input instance. Depending on 

the type of outcome variable (output), supervised 

learning is divided into two subsets: 

 If the output variables are categorized, or it 

can only assume a finite set of discrete values, the 

problem is called classification. 

 If the result variable can assume values in a 

continuous range (for example, the amount of water 

behind a barrier or the level of glucose in the blood), 

the problem is known as regression. 

In this section, the focus will be solely on 

examining classification models. When only two values 

are assigned to the output variable (label), it is called a 

binary classification. Predictive models can belong to 

two families, namely parametric and non-parametric 

models. Parametric models assume that the function to 

be estimated belongs to a method that is described by a 

finite set of parameters. In this case, the learning is in 

accordance with the estimation of the parameters that 

optimally describe the estimated function of the data. 

Nonparametric models do not limit the relationship 

between data set input properties and the output 

variable to a specific function family. The complexity 

of nonparametric models is automatically adjusted in 

the training phase. The following are some of the most 

popular classification models in bioinformatics issues. 

 

4.1. Support Vector Machine as Classifier 

One of the most widely used nonparametric 

learning models used for classification is the support 

vector machine (SVM). This classifier assumes that the 

output variable (label) is linearly related to the 

corresponding input features. Assuming linearity, it 

means that geometrically in a three-dimensional space 

or more, a hyper-plane can separate observations of one 

class from instances of another class. In SVM, a hyper-

plane is uniquely defined by an orthogonal vector 

corresponding to the parameters w (parameters to be 

estimated). Among the infinite separator line, the SVM 

model finds a separator hyper-plane that maximizes the 

potential error margin (Figure 2), which is defined as 

the smallest distance between each sample and the 

separator hyper-plane. SVM can also be used as a 

nonlinear non-parametric classifier. In fact, instead of 

calculating the linear function f, data can be converted 

by applying a nonlinear kernel function. This will be 

possible with the help of the kernel. Initially, SVMs 

were proposed to solve binary classification problems. 

In many practical applications, especially in the field of 

biomedicine, the number of classes is generally more 

than two classes. These multi-class problems are 

usually solved by breaking them down into binary sub-

problems and building SVM classifiers. At this stage, 

two main strategies are used: classify one class from 

the other (one-against-all approach) or classify each 

pair of classes (one-against-one approach) [89, 90]. 

Because SVMs can cope well with high-dimensional 

data, it has been widely used in neuroscience and 

bioinformatics. For example, in [91], a fuzzy version of 

SVM with multiple hybrid kernels is proposed to detect 

DNA-binded proteins. More diverse applications can be 

studied in [92-93]. 

 

 
Fig. 2. Hyper-plane to maximizing two-class error 

margin (SVM process). 
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4.2. Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a 

multivariate and parametric statistical learning model. 

The LDA assumes that the prediction variables must be 

evenly distributed along the covariance matrices. For 

this reason, this method is not used in cases where there 

is no presumption of normalcy or there is outlier data. 

The LDA is commonly used as a linear classifier. Also 

it is used to analyze the degree to which variables are 

more discriminative to distinguish between classes. For 

example, in neuroscience, the LDA has been used for 

electroencephalographic (EEG) data analysis to 

differentiate between healthy elderly. It has also been 

used to detect Alzheimer's disease early [94]. As 

another example, an LDA-compliant version has been 

proposed to classify gene expression data [95-97]. 

 

4.3. Random forest 
Random forest (RF) is an aggregate classifier based 

on bagging theory. In this classifier, a large set of 

independent classifiers (decision tree types) are 

collected to produce a stronger and more accurate 

classification. The more independent trees used for 

random forest training, the lower the standard 

deviation. One of the main advantages of using RF is 

that the features can be classified based on the average 

improvement criterion in the purity criterion, which can 

be considered as an indicator of the relationship 

between the features for classification. One of the 

disadvantages of random forest is its sensitivity to input 

parameters. Random forests have been widely used in 

both bioinformatics [98] and neural imaging. 

 

4.4. Nearest neighbor’s Classifier 

The nearest neighbor is a non-parametric classifier 

that performs the following very simple concept in 

classification process: The result of a prediction for an 

experimental sample depends on the K labels of its 

nearest neighbor in the feature space. The Euclidean 

distance criterion is usually used to identify the nearest 

neighbor. Class membership is also assigned based on 

the selected majority tag. The voting scheme does not 

require any prior knowledge of data distribution so it is 

considered a lazy category. The choice of K value is up 

to the user, but setting it can increase the final 

performance of the system. As a general rule, if the K is 

too small, the problem will be noise sensitive. But if the 

K is too large, the probability of selecting examples 

from other classes (wrong classes) as the nearest 

neighbors increases. In databases with unbalanced 

classes, the risk of incorrectly assigning membership to 

the class is over-sampled. Since now, KNN has been 

applied in many bioinformatics problems such as: 

Study protein localization in proteomics [8, 99-101], 

protein types prediction [99]. For its ability to model 

the local structure of data, it has also been used to 

segment brain's texture [102-104]. 

 

4.5. Rule-based Classifiers 
Rule-based classifiers are different type of learning 

models that, starting from a set of observations, derive 

rules that identify subgroups of objects. Identification 

of subgroups is determined based on the features 

extracted from the samples. Most structural induction 

rules have the format, IF condition THEN class. In this 

conditional format, it is a set of attribute-value pairs 

derived from the attributes that describe the 

instructional examples. Because of this, they are 

different from traditional methods. There are basically 

three categories of law enforcement strategies: 

I. Separate-and-conquer strategies: These 

methods look for a rule that describes the patterns of 

training data that make up a subset then retrospectively 

learn more rules until they assign a class to each object. 

II. Divide-and-conquer strategies: These are 

those used by decision trees that create a rule for each 

path from root to leaf. 

III. Comprehensive search strategies: Examine all 

rules that predict class tags, which can then be filtered 

using the minimum quality criterion. 

Applications of these models include the 

identification of miRNA regulatory modules [105]. 

Consider a set of miRNAs and a set of their genetic 

targets, then the goal is to find the corresponding 

miRNA subsets and target genes. These modules are 

commonly known as control modules. In these issues, 

the main features of miRNA expression profiles and 

mRNA structure are shown. For each specific gene, a 

variety of similarity criteria (such as Pearson's 

correlation coefficient) can be used to calculate 

similarities between pairs of genes. A threshold is also 

used to divide a set of genes into two groups of similar 

and different genes. Next, a segregation and 

segregation law induction strategy is applied to 

generate a set of miRNA-mRNA regulatory rules. 

Finally, only rules containing miRNAs with higher 

expression rates are preserved. Other applications of 

rule induction in bioinformatics include disease 

subtyping [106, 107] and description of gene 

assemblies [108]. Some efficient approaches for 

bioinformatics data classification remain briefly in 

Table 1. 

 

Table 1. A summary of ML classifiers applied to 

gene expression data. 
Ref. Technique Data Accuracy 

[109] 

Extreme 

learning 
machine 

(ELM) 

Central nervous system 
tumor 

79% 

[110] SVM 
Breast Cancer 

(somatic mutation 
69 % 
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profile) 

[110] Tree C4.5 
Breast Cancer 

(somatic mutation 

profile) 

60 % 

[110] KNN 
Breast Cancer 

(somatic mutation 

profile) 

49 % 

[111] SVM – ANN 
Breast Cancer 

(TCGA samples) 
91.74 % 

[111]  SVM+RBF 
Breast Cancer 

(TCGA samples) 
94.78% 

[112]  KNN + SVD 
Leukemia cancer  
(Gene expression) 

92% 

[112] KNN + SVD 
Colon cancer  

(Gene expression) 
80% 

[112] KNN + EVD) 
Breast cancer  

(Gene expression) 
91% 

[113] 

Recursive 

feature 

elimination 
(RFE) +SVM 

Breast Cancer 

(microarray) 
88.8% 

[113] 

Recursive 

logistic 
regression 

(RLR) +SVM 

Breast Cancer 
(microarray) 

87% 

[114] SVM + ICA 
Prostate tumor 

(microarray) 
93 % 

[115] 

Sequential 

minimal 

optimization 

+ SVM 

Leukemia (gene 

expression) 
94.11% 

[116] 

Artificial 

neural 

network 
(ANN) 

Renal cell cancer 

(genome) 
89.22% 

[117] 

SVM + 

feature 
selection 

Breast Cancer 

(genomic data, RNA 
sequence) 

82 % 

[117] 
(Naïve 

Bayes) NGB 

Breast Cancer 

(gene expression ) 
85 % 

[117] KNN 
Breast Cancer 

(gene expression ) 
87 % 

 

5. APPLICATION of  DEEP LEARNING IN 

BIOINFORMATICS 

Today, deep learning is a large and effective part of 

a variety of learning methods in the field of artificial 

intelligence. In a nutshell, deep learning models are 

composed of several layers in row that are capable of 

displaying data with a high level of abstraction. The 

main difference between classical low-deep learning 

models (such as the perceptron neural network with 

hidden layers) and deep learning networks is that 

classical neural networks cannot work with raw data 

and at least one feature extraction step must be 

performed before the network learning process is done. 

But deep learning networks actually receive raw data 

and act as feature extraction units themselves. As we 

move forward in layers, each layer extracts more 

abstract and complex features from its input (which can 

be raw data such as an image matrix) than the previous 

layer (Figures 3 and 4). 

Since the term deep learning refers to a wide range 

of techniques, one of the main challenges in deep 

learning applications is to select the most appropriate 

model/structure for the intended application. Different 

models of deep networks can be classified into three 

categories: 

 Supervised learning networks: designed to 

provide the power of differentiation in classification 

problems. 

 Unsupervised learning networks: designed to 

identify high-level data correlations. 

 Hybrid or semi-regulatory networks: which 

aim to classify data using the outputs of an 

unsupervised model, in order to speed up the learning 

process 

One of the main limitations of deep networks is the 

large number of their parameters, which sometimes 

complicate the models. These parameters depend on 

various variables, such as: 

 Architectural aspects (such as number of 

layers or transfer functions) 

 Type of optimization (Ex. learning rates and 

momentum values) 

 Regularization type. 

In recent years, deep learning networks have been 

successfully used in a broad range of different 

applications in bioinformatics and biomedicine [118-

121]. 

 

 
Fig. 3. Structure of classical neural networks with 

one hidden layer. 

 

 
Fig. 4. Main structure of deep convolutional neural 

networks. 
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5.1. CNN Application in RNA-ISH 

The term RNA ISH is a technique that can localize 

and visualize gene expression in a group of cells, in a 

specific texture, or in an organism [122]. This 

technique is useful for demonstrating changes in 

expression patterns during development [123]. This is 

usually performed by hand, but in recent years, using 

deep convolutional neural networks (CNN) [124], they 

have been able to automate the annotation of gene 

expression patterns. Deep models require a large 

number of labeled images for training phase. One way 

to overcome this limitation is to use the transfer 

learning approach, in which the network is trained on 

one data set and then used as a feature extractor in other 

datasets [125-127]. For example, in [124] transfer 

learning is performed from natural images to ISH 

images. They used the OverFeat model and trained on 

the ImageNet dataset. They then generalized the 

features and finally used them as feature extractors in 

ISH images. The experimental results show that by 

using convolutional networks as feature extractors, the 

accuracy of annotating gene expression patterns at 

multiple levels of brain structures can be greatly 

increased. The results in [124] shows that their 

proposed method provides an average overall accuracy 

of 0.894, which is higher than the 0.820 accuracy based 

on the bag of words approach. 

 

5.2. Application of deep learning networks CNNs 

to identify DNA- and RNA-binding protein  

One of the most influential processes in developing 

regulatory biological models and identifying disease 

types understands the sequence properties of DNA and 

RNA-binding proteins. Today, sequence properties are 

completely determined using position weight matrices 

(PWM). PWMs are easy to interpret and can be easily 

scanned into a genomic sequence to identify potential 

binding sites. Many cliché classification models and 

shallow neural networks have been proposed for this 

purpose [128-130]. But these models face different 

problems, including: data production by different 

technologies, different formats of received data, huge 

volumes of data that need to be analyzed and specific 

types of data noise. Alipanahi et al. [131] adopted an 

in-depth CNN to predict sequence properties and 

binding scores to address all of these problems. Their 

proposed method is known as DeepBind. The proposed 

network provides three points: 

a) Derive directly connection properties from input 

sequence data  

b) Discover new motifs  

c) Discover the rules needed to combine them into a 

predicted connection point. 

 

5.3. Alzheimer's Disease Diagnosis based on Deep 

AEs 

Deep learning models with much more power than 

classical neural networks can also analyze and classify 

more complex patterns. Therefore, in some studies 

today, deep networks have been used to recognize 

biomarkers of neurological disorders [118, 121]. 

Recently, there has been a growing interest in the 

application of AEs to extract low-dimensional features 

from several neuroimaging modalities, often used in a 

multiview fashion. Liu et al. [82] proposed a 

multilayer neural network (MLP) consisting of several 

AEs and a soft-max layer is used for the diagnostic of 

the Alzheimer's disease. MR and PET imaging 

modalities are fused by jointly training the AEs with 

the concatenated MR and PET inputs. To avoid neurons 

that are activated only by one modality, in a pretraining 

phase, a series of samples is presented to the network 

where the inputs of one of the modalities are replaced 

by zeros. In [132], AEs are used to extract hierarchical 

nonlinear relations between functionally connected 

regions of the brain, following the idea that the 

functional organization of the brain is dynamic rather 

than static. 

 

5.4. Convolutional neural networks to analysis 

brain network 

Deep covolutional neural networks (CNN) are 

commonly used for image analysis because they use the 

local features of image in the filtering process at each 

layer. Examples of CNN applications for brain image 

analysis are available [133-137]. However, CNNs can 

be used to analyze connectum data to organize the 

structural / functional areas of the brain. Kawahara et 

al. [138] proposed a deep structure called 

BrainNetCNN that is designed to predict the 

consequences of clinical neurodevelopment. Unlike 

traditional image-based CNNs, BrainNetCNN uses 

different brain network topologies to create 

convolutional filters based on edge-to-edge, edge-to-

node, and node-to-graph relationships, thus avoiding 

the need for full connectivity. Some efficient deep 

learning methods in bioinformatics data analysis are 

survived briefly in the Table 2.  

 

Table 2. A summary of deep learners applied to 

bioinformatics data. 
Ref. Technique Data Accuracy 

[139] DeepNetii KIPAN (RNA Seq.) 75 % 

[139] DeepNetii COAD (RNA Seq.) 57 % 

[139] DeepNetii BRCA (RNA Seq.) 65 % 

[140] Shallow DNN 

Swiss-Prot 

(Protein 

classification) 

54.1 % 

[140] LSTM 

Swiss-Prot 

(Protein 

classification) 

78.4 % 

[141] 
Convolutional 

neural network 

TCGA (20 types of 

cancers) 
78 % 

[142] 
Recurrent neural 

network(RNN) 

GEO (gene 

expression) 
63.9 % 

[143] Integrate CNN TCGA (mRNA and 60 % 
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Methylation) 

[144] ResNet 
Alzheimer diagnosis 

(fMRI data) 
90 % 

[144] ACNN 
Alzheimer diagnosis 

(fMRI data) 
91 % 

[145] Deep CNN (DCNN) 

Breast cancer 

(gene expression + 

copy number 

alternatives) 

96 % 

[146] SOM + VGG33 Breast cancer 89.7 % 

[146] SOM + ResNet-112 Breast cancer 97 % 

[146] 
t-SNE + ResNet-

112 
Breast cancer 96 % 

 

6. CONCLUSION 

Machine learning is one of the most practical 

branches of artificial intelligence. The main goal in all 

machine learning techniques is to analyze the data in 

different formats and identify the structures in the data 

based on the problem form .The articles reviewed in 

this article showed that machine learning techniques 

can be widely used to solve various problems in 

bioinformatics. Firstly, the advances in high-throughput 

technologies for the acquisition of biomedical data have 

created the need of sophisticated methods able to cope 

with the complexity of big data. Data on genes, 

proteins, genomes and brain structure are vast. 

Therefore, various techniques of dimensional reduction 

and feature selection can be applied to reduce the 

computational load on this data.In many bioinformatics 

and neuroscience data, data labeling is not possible. 

Therefore, a variety of clustering methods can be 

widely used to identify data sets with common 

properties .Categorization means attributing data to one 

of the predefined groups. There is a classification 

challenge in many branches of bioinformatics, such as 

identifying patient subtypes, identifying disease types, 

identifying gene structures, and identifying RNA 

binding sites to proteins. Therefore, this group of 

machine learning techniques can be used .Deep 

learning is one of the new and versatile branches of 

machine learning that can be used for a variety of tasks 

such as categorization, feature extraction and 

regression. For this purpose, deep learning in 

neuroscience and bioinformatics is used. Despite some 

of the limitations and disadvantages mentioned in this 

article, the results presented in relation to numerous 

articles showed that machine learning approaches can 

be much more effective in this scope than traditional 

and statistical computational methods. This has led to 

the use of new research areas such as multi-faceted 

learning and deep learning in the field of biomedicine. 
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