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ABSTRACT: 

Compressive sensing is a technique that can reconstruct sparse signals under Nyquist rate. This study is about 

comparison of widely used sparse signal reconstruction algorithms under noisy measurements. Three algorithms, 

Orthogonal Matching Pursuit, Compressive Sensing Matching Pursuit and Primal Dual Interior Point method are used 

to reconstruct sparse signal from noisy measurement and performance results are compared. Firstly, a sparse signal is 

sampled under Nyquist rate and observation vector is obtained. After that, white Gaussian noise is added to this 

observation vector. Then, sparse reconstruction algorithms are employed to reconstruct the original signal from noisy 

measurement. These algorithms are tested for various measurement number and sparsity levels. Test conditions are 

same for all algorithms. Finally some performance metrics results related to reconstructed signal are obtained. These 

performance metrics are mean squared error, correlation of the reconstructed signal and original signal, reconstruction 

time of the algorithms and iteration numbers. According to these metrics, when sparsity level is very smaller than 

measurement number, Orthogonal Matching Pursuit has better results than others. However, when sparsity level is 

increased and close to measurement number, Primal Dual Interior Point method has better performance than others in 

terms of reconstruction a sparse signal from noisy measurement. 
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1.  INTRODUCTION 

Compressive sensing (CS) asserts that it can recover 

a sparse signal at a lower rate than Nyquist rate [1]-[3]. 

A signal is called sparse if much of its entries are zero; 

small numbers of its entries are nonzero. CS theory 

consists of three main processes: sparse representation, 

measurement and sparse signal reconstruction [4]. The 

first process is representing a signal as sparse in its 

original domain or suitable transform domain. Many 

natural signals are sparse in its original domain or 

transform domain like wavelet, Fourier or discrete 

cosine transform. A signal can be made sparse by using 

suitable ones of these transformations according to 

signal properties. In measurement process, signal is 

sampled at a lower number than signal length. This can 

be explained in mathematically as in (1). 

𝑦 =  𝛷𝑥    (1) 

In (1), 𝑥 ∊  𝑅𝑁 represents sparse signal, 𝛷 ∊  𝑅𝑀𝑥𝑁 

measurement matrix and 𝑦 ∊  𝑅𝑀  observation matrix. 

In measurement process, observation matrix is obtained 

by multiplying measurement matrix and sparse signal. 

In CS, measurement matrix is needed to be satisfied 

Restricted Isometry Property (RIP) and incoherence 

[5], [6]. These two conditions are met with high 

probability by choosing measurement matrix as random 

Gaussian matrix [6]. Last process is sparse signal 

reconstruction. The recovered signal is obtained from 

observation matrix by using sparse signal 

reconstruction algorithms. In general these algorithms 

use the knowledge of observation matrix, measurement 

matrix and sparsity level. Until this time, many sparse 

recovery algorithms have been introduced. Widely used 

sparse signal reconstruction algorithms are Basis 

Pursuit (BP), Matching Pursuit (MP), Orthogonal 

Matching Pursuit, (OMP), Compressive Sampling 

Matching Pursuit (CoSaMP) and Primal Dual Interior 

Point (PDIP) [7]. Although sparse recovery algorithms 

can be divided into many different class of algorithms, 

they can basically be classified into two categories as l1 

minimization and greedy algorithms [8]. These two 

classes of algorithms are compared in this study. These 

are OMP, CoSaMP algorithms from greedy algorithms 

and PDIP method from l1 minimization. The 
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comparison is especially made under noisy 

measurements  

The rest of the paper is organized as follows: 

Second part of the study explains PDIP method, OMP 

and CoSaMP algorithms. Third part includes 

simulation results and finally, fourth part is conclusion. 

 

2.  SPARSE SIGNAL RECOVERY ALGORITHMS 

 

2.1.  PDIP method 

The original CS problem is l0 norm optimization. is 

shown in (2).  

 min ||𝑧||0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝛷𝑧 = 𝛷𝑥   (2) 

However l0 norm optimization is NP-hard that need 

exhaustive enumeration. If measurement matrix 

satisfies RIP and incoherence properties, l1 norm 

optimization can be used instead of l0 norm 

optimization [3], [9]. 

𝐦𝐢𝐧 ||𝒛||𝟏 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐   𝜱𝒛 = 𝜱𝒙  (3) 

L1 norm problem is a convex problem and can be 

solved by using linear programming method. In this 

study PDIP algorithm is used as l1 norm optimization 

method when comparing with greedy algorithms. 

Equation (3) can be expressed as linear problem as in 

(4) [8]. 

𝒎𝒊𝒏𝒛 𝟏𝟐𝒏
𝑻 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐  𝑨𝟎𝒛 = 𝒚 𝒂𝒏𝒅  𝒛 ≥ 𝟎

 (4) 

PDIP method is used to solve (4). PDIP method is 

basically following. Considering Kuhn tucker 

conditions at the minimal point 𝒛∗ of the (4), there exist 

two vectors 𝒗∗ ∊  𝑹𝑴 and 𝝀∗ ∊  𝑹𝟐𝑵 such that 

12𝑁
𝑇 + 𝐴0

𝑇𝑣∗ − 𝜆∗ = 0,   (5) 

𝜆∗
𝑖𝑧

∗
𝑖 = 0, 𝑖 = 1,2, … 2𝑁,   (6) 

𝐴0
 𝑧∗ = 𝑦,    (7) 

𝑧∗ ≥ 0,     𝜆∗ ≥ 0.    (8) 

The PDIP algorithm solves the Kuhn-Tucker conditions 

above (5)-(8), by the newton iteration method. [10]. 

This method is called interior point method because 

𝑧[𝑘], 𝑣[𝑘], 𝜆[𝑘] approximated vectors are kept in an 

interior point of the region defined by (8). 

 

2.2 Greedy Algorithms 

Greedy algorithms try to solve a problem in an 

iterative manner. In CS, greedy algorithms aim to solve 

(2) by updating the support set iteratively. For each 

iteration, the columns of measurement matrix that 

mostly correlated with observation matrix are chosen. 

After that, the contribution of the support set columns 

is subtracted from observation matrix. This process 

continues until correct set of columns are identified.  

 

2.2.1 OMP Algorithm 

 OMP creates the solution by choosing a mostly 

correlated column vector of the measurement matrix 

and calculating new residue at each step. In other 

words, most strongly correlated column of 

measurement matrix with observation matrix is chosen 

firstly. Afterwards, its contribution to observation 

matrix is subtracted and the same procedure is applied 

to the residual iteratively. This algorithm finds the 

solution of sparse reconstruction problem after k 

number of iterations. The OMP algorithm is explained 

in detail as shown in Algorithm 1 [11]. 

 

Algorithm 1: OMP Algorithm. 

Input: 

 𝛷:  𝑀𝑥𝑁-dimensional measurement matrix. 

 𝑘: Sparsity level 

 𝑦: 𝑀𝑥1-dimensional observation vector. 

Output: 

 𝑥′: Estimation of the original signal 𝑥. 

 Ʌ𝐾: An index set of non-zero elements from 

{1,…,N}. 

 𝛷𝐾: Selected columns of measurement matrix. 

 𝑎𝑘: Approximated observation signal 𝑦  

 𝑟𝑘 = 𝑦 − 𝑎𝑘: Residual vector. 

Initialization: 

 𝑟0 = 𝑦 

 Ʌ𝐾 = ∅ 

 t=1  

 𝛷0 = ∅ 

Iterations: 

1. Find the index 𝜆𝑡 which solves the following 

optimization problem. 𝜆𝑡 is the column of 𝛷 which is 

mostly correlated with the 𝑟𝑡−1 

𝜆𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1..𝑁|〈𝑟𝑡−1, 𝜑𝑗〉|  (9) 

2. Augment the index set. 

Ʌ𝐾 = Ʌ𝐾 ∪ {𝜆𝑡}    (10) 

3. Augment the matrix of selected columns. 

𝛷𝑡 = [𝛷𝑡−1      𝜑 𝜆𝑡
]   (11) 

4. Get a new signal estimation by solving below 

problem. 

𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥′||𝑦 − 𝛷𝑡𝑥′||2  (12) 

5. Calculate the new approximation of the 

observation signal. 

𝑎𝑡 =  𝛷𝑡𝑥𝑡    (13) 

6. Calculate the new residual. 

𝑟𝑡 = 𝑦 − 𝑎𝑡    (14) 

7. If 𝑡 < 𝑘, increment 𝑡 and return to Step 1 for a 

new iteration. 

At every new iteration (t), the 𝑟𝑡  is orthogonal to 

columns of the matrix 𝛷𝑡. Also, when the residual of 

the previous iteration (t−1) is nonzero, a new column 

of measurement matrix is chosen and the matrix 𝛷𝑡 has 

independent columns. For that reason, the signal 

estimation 𝑥𝑡, solution to the least squares problem in 

Step 4, is unique. At the end of the algorithm, the 

estimation of the signal 𝑥 has nonzero entries at the 

components listed in the index set Ʌ𝑡 = Ʌ𝐾 , when t=k 

at last iteration. 
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2.2.2 CoSaMP Algorithm 

Firstly, transpose of the measurement matrix and 

observation matrix are multiplied in this algorithm. 

After that, mostly correlated columns of measurement 

matrix are chosen twice as much as sparsity level and 

support set is created. And then, the number of 

elements of support set is decreased from 2k to k by 

using least squares method. Finally residue vector is 

calculated, and these iterations continue until residue 

vector fall below a specified error term. The result of 

least squares for last iteration is the reconstructed x 

signal. Detailed steps of CoSaMP algorithm are 

following in Algorithm 2 [8], [12]. 

 

Algorithm 2: CoSaMP Algorithm. 

Inputs: 

 𝛷: 𝑀𝑥𝑁 -dimensional measurement matrix 

 𝑘: Sparsity level of 𝑥 signal. 

 𝑦: 𝑀𝑥1 -dimensional observation matrix. 

Output: 

 𝑥[𝑡 + 1]: Recovered 𝑥 signal. 

Initial Values: 

 𝑥[0] = 0 

 𝑟 [0] = 𝑦, Residual vector.  

 Ʌ = ∅, Support set. 

 t=0, Number of iteration. 

Algorithm Steps: 

1- Choose the support set twice as much as sparsity 

level, so 2k. 

Ʌ = Ʌ ∪ 𝑠𝑢𝑝𝑝(𝐻2𝑘|𝛷𝑇r[k]|) (15) 

2- Calculate z vector using least square 

approximation. 

𝑧 = 𝛷Ʌ
Ϯ
𝑟    (16) 

𝛷Ʌ
Ϯ

= (𝛷Ʌ
𝑇𝛷Ʌ

 )−1𝛷 Ʌ
𝑇   (17) 

3- Equate zero all z vectors, except biggest k pieces.  

𝑥[𝑡 + 1] = 𝐻𝑘(𝑧)    (18) 

4- Update residual vector by using (19) and (20). 

Ʌ = 𝑠𝑢𝑝𝑝(𝑥[𝑡 + 1])  (19) 

𝑟[𝑡 + 1] = 𝑦 −  𝛷x[t + 1]  (20) 

5- 𝑡 = 𝑡 + 1 

6- Exit, if sufficient conditions are met. 

Note: Hk represents thresholding operator. This 

operator equates all elements to zero except k number 

of elements.  

 

3.  SIMULATION RESULTS 

In this study, sparse reconstruction performances of 

three algorithms, OMP, CoSaMP, PDIP, are compared . 

In this comparison, measurements include 20 dB white 

Gaussian noise. While performing these experiments, 

firstly a sparse signal is generated. And then, 

measurement matrix is generated in such a way that 

satisfy RIP and incoherence property. After generating 

measurement matrix, observation matrix is obtained by 

multiplying sparse signal and measurement matrix. 

Practical systems always have some noise. In CS, 

especially noise is occurred while measuring data. For 

that reason, 20 dB Signal to Noise Ratio (SNR) level 

noise is added to observation matrix/measurements. 

Finally, by using three mentioned sparse signal 

recovery algorithms, the sparse signal is tried to be 

recovered. And then, algorithms’ recovery 

performances are compared for different test cases. 

These test cases include different sparsity level and 

different measurement numbers. The performance 

metrics are Mean Squared Error (MSE) between 

recovered signal and original signal, correlation 

between recovered signal and original signal, 

reconstruction time and iteration number. 

 

3.1.  Test Case 1 

In this test case, length of the test signal is 512, 

number of measurements is 256. Sparse recovery 

algorithms are tested for different sparsity levels that 

16, 32, 64 and 128. The performance metrics of the 

algorithms for this case are shown in Table I. 

 

Table 1. The results of performance metrics for test 

case 1. 

N=512 

M=256 

MSE Corr. Rec. 

time 

(s) 

Number 

of 

iteration 

k=16     

PDIP 1.10010-3 0.9867 0.1868 18 

OMP 4.78310-5 0.9995 0.0278 16 

CoSaMP 1.10810-4 0.9987 0.0210 6 

k=32     

PDIP 2.50010-3 0.9844 0.1844 19 

OMP 5.47710-4 0.9966 0.0429 32 

CoSaMP 6.73410-4 0.9959 0.0812 12 

k=64     

PDIP 5.50010-3 0.9775 0.2020 19 

OMP 1.00010-3 0.9958 0.1273 64 

CoSaMP 2.90010-3 0.9881 0.3800 21 

k=128     

PDIP 4.51010-2 0.8949 0.2366 19 

OMP 5.77010-2 0.8729 0.4952 128 

CoSaMP 9.53010-3 0.7590 0.7744 20 

 

From Table I, for k=16, OMP has better MSE and 

correlation values than other two. However, when 

reconstruction time is considered, CoSaMP is a bit 

better than OMP. For sparsity level k=32, OMP is the 

best when MSE, correlation and reconstruction time are 

considered. However, there is not too much difference 

between OMP and CoSaMP in terms of MSE and 

correlation values. When sparsity level is 64, has the 

best performance metrics. When sparsity level is 128, 

PDIP is better than other two. This can be explained in 

such a manner that these three algorithms can’t recover 
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a sparse signal even from noiseless measurements for 

N=512, M=256 and k=128. For that reason this case, 

k=128, may not reflect exact comparison. 

 

3.2.  Test Case 2 

In this test case, length of the test signal is 512, 

number of measurements is 128. Sparse recovery 

algorithms are tested for different sparsity levels that 

16, 32 and 64. The performance metrics of the 

algorithms for this case are shown in Table II.  

 

Table 2. The results of performance metrics for test 

case 2. 

N=512 

M=128 

MSE Corr. Rec. 

time 

(s) 

Number 

of 

iteration 

k=16     

PDIP 1.20010-3 0.9861 0.1379 20 

OMP 2.04310-4 0.9976 0.0284 16 

CoSaMP 6.51110-4 0.9922 0.0342 10 

k=32     

PDIP 3.60010-3 0.9797 0.1251 21 

OMP 1.50010-3 0.9910 0.0423 32 

CoSaMP 6.00010-3 0.9635 0.1761 37 

k=64     

PDIP 3.82010-2 0.8282 0.1235 18 

OMP 1.01510-1 0.6266 0.1139 64 

CoSaMP 7.03010-2 0.6462 0.4064 45 

 

As shown from Table II, when sparsity level is 16, 

OMP has better performance than other two for all 

performance metrics. When sparsity level is 32, MSE 

and correlation values for all algorithms are getting 

worse w.r.t. previous sparsity level, k=16, because 

algorithms need to find 32 values instead of 16.  Again 

in this case OMP is the best. Also, PDIP method is 

better than CoSaMP when sparsity level is 32. When 

sparsity level is increased to 64, PDIP has better 

performance metrics values than other two. 

 

3.3.  Test Case 3 

In this test case, length of the test signal is 512, 

number of measurements is 64. Sparse recovery 

algorithms are tested for different sparsity levels that 16 

and 32. The performance metrics of the algorithms for 

this case are shown in Table III. 

As shown from Table III, when sparsity level is 16, 

OMP has better performance than other two for all 

performance metrics. When sparsity level is 32, the 

performance orders of the algorithms are following: 

PDIP, CoSaMP, OMP respectively. However 

reconstruction time is considered, OMP reconstruct the 

signal in shorter time. 

 

Table 3.  The results of performance metrics for test 

case 3. 

N=512 

M=64 

MSE Corr. Rec. 

time 

(s) 

Number 

of 

iteration 

k=16     

PDIP 5.00010-3 0.9562 0.1175 21 

OMP 4.30710-4 0.9949 0.0267 16 

CoSaMP 1.00010-4 0.9892 0.0484 25 

k=32     

PDIP 2.72010-2 0.8164 0.0987 16 

OMP 8.37010-2 0.5583 0.0394 32 

CoSaMP 5.47010-2 0.5729 0.0774 25 

 

In summary, the algorithms are tested for different 

sparsity levels and different measurement numbers for 

proper comparison. It can be said from this study, 

greedy algorithms are better than PDIP for recovering 

sparse signal from noisy measurement in general. 

However, when sparsity level is close to measurement 

number, PDIP method has better performance metrics 

of sparse recovery. There exist some other studies that 

compare these algorithms without noise [13]. In 

mentioned study, CoSaMP has better performance 

results with noise free measurements. 

 

4.  CONCLUSION  

To sum up, CS is a useful method for recovering 

sparse signal when compared with traditional sampling 

techniques. In literature, most CS related studies are 

focused on reconstruction algorithms. Three sparse 

signal reconstruction algorithms are compared in this 

study. OMP, CoSaMP and PDIP algorithms are chosen 

for comparison because they are widely used 

algorithms in literature. It is understood from this study 

that in general, OMP has better performance results for 

recovering sparse signal from noisy measurements.  
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