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ABSTRACT: 

In this paper, wide band circuit model based on modified vector fitting method are proposed for the grid-grounding 

system. At first, the input impedance of the grid-grounding system in the frequency domain is computed by accurate 

methods such as the method of moments (MoM). The circuit models are then achieved through converting input 

impedance of the problem to rational functions via modified vector fitting method. These functions are formed in such 

a way that at first a set of starting poles in the frequency range of interest are chosen, and then the exact locations of 

poles are found via an iteration process by least square method. Finally, these rational functions are converted to 

equivalent circuits in time domain and then imported into EMTP software for modeling the ground system so that 

transient voltage of overhead lines subjected by lightning strikes is also efficiently evaluated. 

KEYWORDS: Grounding system; EMTP; modified vector fitting. 

 

1.  INTRODUCTION 

Grounding systems such as vertical, horizontal and grid 

electrodes are often used in power systems to discharge 

lightning current into earth without any damage to 

people and installations [1, 2]. Figure 1(a) shows 

schematic diagram of grid grounding systems under 

lightning strike. Transient voltage of grounding system 

(defined electrical potential of the grounding electrodes 

with respect to a reference point at infinite as shown in 

figure 1(b)) is of great practical importance, because 

firstly it is able to reveal the maximum voltage level 

that is submitted to the ground, secondly it is evaluates 

the time that the ground is subjected to certain levels of 

transient voltage. Safety criteria are based upon 

minimizing this parameter.  

This parameter is usually computed by transient solvers 

such as EMTP (Electromagnetic Transient Program) 

software [3, 4] through importing grounding system as 

equivalent circuit into EMTP. This equivalent circuit in 

evaluating lightning-induced voltage across surge 

arresters as shown in figure 1(c) is also of importance. 

It is well known that to compute transient voltage of 

both grid grounding system and arresters, this 

equivalent circuit should be correctly extracted and 

imported into EMTP. 


 

(a) 

 

(b) 
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Fig. 1. (a): Schematic diagram of grid-grounding 
system, (b): definition of transient voltage and input 
impedance, (c): an overhead line terminated to grid-

grounded arrester. 

Most often, the equivalent circuit of grid grounding 

system is represented as lumped resister or combination 

of resistors, inductances and capacitances [5-8] which 

their values are based upon quasi-static assumption and 

thus these models at high frequencies created by 

lightning strikes are inaccurate. 

To remove this restriction, equivalent circuit of 

different grounding systems based on finite difference 

time domain (FDTD) was extracted [9], but these 

circuits firstly include too many lumped elements, 

secondly cannot consider frequency dependence of the 

electrical parameters of soil [10] and thirdly suffer from 

time consuming computations, and fourthly they cannot 

consider ionization of soil.  

Although recently transient voltage of grounding 

systems by finite element method (FEM) [11] and 

combination of method of moments (MoM) and 

conventional nodal analysis method [12] has been 

carried out, they are not led to extracting equivalent 

circuit of grounding systems.  

In contrast with the existing circuit models, the 

efficient vector fitting method (VF) [13-15] could be 

used. In this method, at first, the input impedance of the 

grid-grounding system in the frequency domain is 

defined as (1) and computed by accurate methods such 

as MoM [16].  

)(

)(
)(






jI

jV
jZ 

                                                         (1)

 

Where )( jV and )( jI  are electrical potential and 

electrical current in the frequency domain respectively 

as shown in figure 1(b). 

The circuit models are then extracted via converting 

input impedance of the problem to rational functions by 

means of the VF. These functions are formed through 

choosing at first a set of starting poles in the frequency 

range of interest, and then the locations of poles are 

modified via an iteration process. As a result, these 

rational functions are converted to equivalent circuits 

and imported into EMTP software for modeling the 

ground system. Also in figure 1(b), )(tI is related to 

the two current waveforms for lightning strikes, that is, 

first and subsequent strokes which are expressed in [8]. 

To the best our knowledge, there is no broad-band 

equivalent circuit for grid-grounding system 

considering frequency dependence of electrical 

parameters of soil (dispersive soil). Figure 2 shows that 

how the electrical parameters of soil at high frequencies 

created by lightning strikes are rapidly changed with 

frequency. In this figure, 
0  is low-frequency 

conductivity of soil. 
 

 

 

 

Fig. 2. Frequency-dependent behavior of electrical 
parameters of lossy soil. 

The aim of this paper is to extract broad-band 

equivalent circuit for grid network buried in a 

dispersive soil. 

This paper is organized as follows. In section 2, 

principle of the MVF is explained. In following, in 

section 3, it is assumed that the electrical parameters of 

soil are frequency dependent, hence the MVF is applied 

to a grid-grounding system and the equivalent circuit is 

then extracted. After then, in this section, the effect of 

previous equivalent circuits and MVF-based one in this 

study on the lightning-induced voltage across surge 

arresters is investigated by EMTP. Finally conclusion is 

given in section 4.  

 

2.   MODIFIED VECTOR FITTING METHOD 

Extracting equivalent circuit of electrical networks is 

based on approximating frequency response with 

rational functions of the following form: 
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Where residues nc  and poles na  are either real 

quantities or come in complex conjugate pairs, while 
d  

and 
h   are real.

  

The aim is to approximate these coefficients using least 

square technique. Also note that the equation (2) is a 

nonlinear problem versus unknown coefficients. Vector 

fitting method solves this problem as a linear problem 

under assumption of known poles in an iteration 

process as follows. 

At the first stage, a set of starting poles are assumed 

and multiply )(sf  by an unknown function
)(s

. Also 

a rational function for 
)(s

is introduced as following: 
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Note that in the above equation, 
)(s

 has the same 

poles as 
)()( ssf 

 . 

Multiplying the second row of (2) by 
)(sf
 gives: 
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Rewriting the above equation  gives: 
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Writing the equation (5) for a given frequency ks ,  

we obtain 

kk bxA 
                                                                     (6) 
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Equation (5) is linear in terms of its unknowns
nc , d , 

h , and 
nc~ . If each sum of partial fractions in equation 

(5) is written as fraction: 
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From the two above equations, we get 
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Equation (12) shows that the poles of 
)(sf
is equal to 

zeros of 
)(s

. Therefore, by computing the zeros of

)(s
, a set of starting poles can be chosen. According 

to [13], the zeros are computed through computing 

eigenvalues of the following matrix: 
TcdbAH ~~ 1                                                       (13) 

Where 
A

 is a diagonal matrix including staring poles, 

and b is column vector of ones. 
c~

is a row vector 

including residues of 
)(s

.  

Note that the zeros calculation by (13) is only 

applicable with nonzero 
d
~

. If the absolute value of  is 

found to be smaller than 81  Etol , the solution is 

discarded and the LS problem is solved again with a 

fixed value for d
~

in (3). That is )
~

(/
~

.( dabsdtoltol  . 

To obtain more accurate result for unknowns, one 

should substitute these zeros in equation (6) as new 

poles, and this process is continued up to predefined 

error is achieved. Finally, once the iteration process is 

finished, equivalent circuit as explained in [17] is 

achieved. 

 

3.  EQUIVALENT CIRCUIT OF GRID-

GROUNDING SYSTEM 

In this section, the MVF model is applied to extract 

equivalent circuit of grid grounding system which is 

equally spaced mm 22  square at depth of m1 .  

Figure 3 shows the amplitude and phase of the input 

impedance grid network for different values of low-

frequency conductivity.  
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Fig. 3. Frequency dependence behavior of the input 
impedance of grid-grounding system [11]. 

Figure 4 compares the exact (MoM) and the MVF 

models. As it is seen, excellent fitting is achieved. 

Accordingly the equivalent circuits without and with 

considering frequency dependence of soil for 

mS /001.00  are extracted as shown in figure 5 

and 6 respectively. From now on the extracted 

equivalent circuit in figure 6 can be imported to EMTP 

for modeling grounding system. 

 

Fig. 4 Modeled input impedance by the MoM and MVF 

for 
mS /001.00 

. 

Finally to know how the frequency dependence of 

electrical parameters of soil affects the transient voltage 

of surge arrester connected to overhead lines, an 

overhead line above ground of height h=10m (figure 1) 

is investigated.  

 

Fig. 5. Equivalent circuit of grid-grounding system 
without considering frequency dependence of soil for 

mS /001.00 
. 

The arrester is a nonlinear load of the following 

characteristic: 
q

refv

v
pi














                                                            (14) 

Where p  
is an integer, q  is an exponent, and refv  

reference voltage for avoiding overflow. Note that in 

figures 5 and 6, all resistance, inductances and 

capacitances are in  , H and F respectively. 

As it is seen in the figures 7, when the frequency 

dependence of soil is included, the transient voltage of 

grounding system affects the rise time and peak value. 

It is well known that this influences the insulation 

coordination study of power system and choosing 

proper lightning arresters [18]. 

 
Fig. 6. Equivalent circuit of grid-grounding system 
with considering frequency dependence of soil for 

mS /001.00 
. 



Majlesi Journal of Telecommunication Devices                                                                   Vol. 5, No. 1, March 2016 

 

17 

 

 

Fig. 7 lightning-induced voltage of surge arrester with 
and without considering frequency dependence of 

electrical parameters of soil. 

4.  CONCLUSION 

In this paper assuming the electrical parameters of soil 

are frequency-independent, the transient voltage across 

arrester was evaluated. The achieved results show that 

this affects rise time and peak value of lightning-

induced voltage and accordingly these affect study of 

insulation coordination of power system and selecting 

proper arresters. Transient analysis of multi-conductor 

overhead line terminated to arrester is another study 

that is under way. 
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