A 2.7 to 10.6 GHz High-Flat-Gain CMOS Low-Noise Amplifier for UWB Applications

Masoumeh Pourjafarian¹, Khalil Mafinezhad²

 Department of Electrical Engineering, Sadjad University of Technology, Mashhad, Iran. Email: mapourjafarian@gmail.com
 Department of Electrical Engineering, Sadjad University of Technology, Mashhad, Iran.

Email: Khmafinezhad@gmail.com

Received: October 3 2015

Revised: October 25 2015

Accepted: November 1 2015

ABSTRACT:

In this paper, a low-power ultra wideband (UWB) low-noise amplifier (LNA) with high and flat gain is proposed. By using an input common-gate stage, an input matching from 3.1 to 10.6 GHz is achieved. The output matching is obtained by using the output matching network including output buffer, capacitor and inductor. In proposed LNA, current-reused technique is adopted in order to reduce the power dissipation. The proposed LNA provides high gain with excellent flatness and low noise figure over the broadband while it has very good stability too. The LNA was simulated with a TSMC 0.18- μ m CMOS technology. The input and output reflection coefficients are less than -11 dB from 3 to 11GHz and -10 from 2.3 to 12 GHz, respectively. The noise figure of the proposed LNA remained under 4.3 dB from 2.2 to 10.7 GHz with minimum value of 3.12 dB. Additionally, high and flat gain of 13±1.8 dB is achieved for whole the ultra band. The linearity of input third-order intercept point is -7.76 dBm and P._{1dB} compression is -17 dBm. The power consumption at 1.5-V supply voltage without an output buffer is only 11 mW.

KEYWORDS: CMOS; low-noise amplifier (LNA); ultra-wideband (UWB); common-gate; noise figure (NF).

1. INTRODUCTION

Ultra-wideband (UWB) systems are wireless systems that transmit data over a wide spectrum of frequency bands. UWB standards have been defined by the U.S. Federal Communications Commission (FFC), since 2002. UWB systems are approved to be used in bandwidth from 3.1 to 10.6 GHz [1]. Since UWB systems could include several frequency bands, so it can be used for different applications on one chip. As a result, the costs will be reduced. In UWB front-end receivers design, the UWB low-noise amplifier (LNA) is a critical block that receives signals from the whole UWB band (3.1-10.6 GHz) and amplifies them with a good signal-to-noise ratio property. In addition, high and flat power gain S₂₁, good input and output impedance matching (i.e., low S₁₁ and S₂₂), and low noise figure are required for whole the frequency band. A number of UWB LNAs based on CMOS technology have been studied [2]. The distributed amplifier (DA) is one of the most popular structures for providing broadband input matching and gain [13], [14]. The major drawbacks of DAs are the large chip area and high power consumption.

The common-gate amplifier provides wideband input matching, but the input-transistor transconductance

increases, so the current dissipation will be increased [15-17]. Using resistive feedback is a good solution for achieving wide bandwidth and flat power gain [18], [19]; however, the use of a resistor in the feedback path reduces the power gain and increases the NF. The reactive-feedback LNA provides broadband input matching, while introduces low noise [20]. The extra area required by the transformer-feedback network is a drawback for the overall chip size.

The proposed UWB LNA includes two stages. The first stage is a common-gate (CG) amplifier that provides wideband input matching. Since the power gain of the CG amplifier is insufficient, the common-source (CS) amplifier is employed as a second stage to amplify the weak RF signals. In order to lower power consumption, current-reused technique is used [1]. In addition, shunt peaking technique is utilized to achieve gain flatness over wideband range [3].

2. CIRCUIT DESCRIPTION

The proposed UWB low power LNA is shown in Fig. 1. The LNA consists of a common-gate stage M_1 , and a common-source stage M_2 . The input common-gate stage provides an input impedance matching and

Majlesi Journal of Telecommunication Devices

Fig. 1. Proposed high-flat gain LNA.

common-source stage improves gain. Using currentreused technique, cascaded topology, reduces power consumption. An output buffer is cascaded with the second stage which combines gain of lower frequencies and higher frequencies to extend ultra-wide bandwidth. M_4 is a current source, which provides a biasing current for M_3 . C_5 and L_5 are parts of the input matching network. AC signal by C_1 and L_2 couples into M_2 . R_1 provides a dc bias for M_2 . C_2 is obtained ground for M_2 . By adding R_2 in M_2 source, the output impedance of M_1 is increased, hence first stage gain is decreased and noise is amplified less. C_3 prevents current flow into R_2 and thus power consumption isn't increased. L_3 provides flat gain by resonating at higher frequencies. The voltage gain of M_1 becomes [1]

$$A_{v1} = (g_{m1}/1 + g_{m1}R_s)Z_{out1}$$
(1)

where Z_{out1} is the output impedance of M_1 , R_5 is the source impedance and g_{m1} is the transconductance of M_1 .

By using shunt peaking technique, common-source stage gain increases at lower frequencies and decreases at higher frequencies. As a result, a good gain flatness is achieved. Also, R_3 affects the output matching impedance and improves it strongly. The voltage gain of M_2 becomes [1]

$$A_{v2} = g_{m2} Z_{out2} \tag{2}$$

where g_{m2} is the transconductance of M_2 and Z_{out2} is the output impedance of M_2 that can be calculated as

$$Z_{out2} = Z_L \|R_T\| (1/C_T)$$
(3)

$$A_{v2} = g_{m2} Z_{out2} \tag{4}$$

where R_T and C_T are the total parasitic resistance and capacitance obtained from the drain node of M_2 , respectively.

The noise figure (NF) of the proposed LNA is affected by the input CG stage. Noise factor F can be given by [1]

$$F \approx 1 + \left(g_{d0}/g_{m1}\right) \tag{5}$$

Vol. 4, No. 4, December 2015

where γ is the coefficient of the channel thermal noise and g_{d0} is the zero-bias drain conductance.

It is shown from (5) that by increasing the g_{ml} , the NF reduces. Since the increase of current makes the g_{ml} increase; thus, there is a trade-off between NF and power consumption. In addition, for decreasing the thermal noise of gate resistance, the multi-fingers transistors are used. In this design, the NF is achieved below 4.3 dB within the entire UWB band.

The other important characteristic of LNAs is stability. In general, to represent stability of the LNA, stability factor is used that is given by [12]

$$K = \left(1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11}S_{22} - S_{12}S_{21}|^2\right) / (2|S_{12}S_{21}|) \quad (6)$$

The necessary and sufficient condition for unconditional stability is K > 1. Also, the other representation of stability is given by [12]

$$\mu = \left(1 - |S_{11}|^2\right) / \left(\left|S_{22} - S_{11}^*\Delta\right| + |S_{12}S_{21}|\right)$$
(7)

and

$$\Delta = |S_{11}S_{22} - S_{12}S_{21}| \tag{8}$$

If $\mu > 1$, the LNA is stable unconditionally.

3. SIMULATED RESULTS

The proposed high-flat gain LNA is simulated by advanced design system (ADS) using TSMC 0.18- μ m RF CMOS model. The LNA consumes only 11 mW from a 1.5 V supply voltage without output buffer.

Fig. 2 shows the input and output reflection coefficients. S_{11} and S_{22} are less than -11 dB and -10 dB, respectively. The simulated power gain S_{21} of the overall stage and the voltage gain of each stage are shown in Fig. 3. Fig. 4 shows power gain S_{21} , and isolation S_{12} . The LNA achieves $11 \sim 14.8$ dB gain within the full operation band. The isolation is less than -52.5 dB over the bandwidth.

As shown in Fig. 5, the noise figure of the proposed LNA is 3.12 to 4.3 dB. The NF over the bandwidth is less than 4.3 dB. The simulated $P_{.1dB}$, -1dB compression point, at 6 GHz is -17 dBm, as shown in Fig. 6. The input third-order intercept point, IIP3, at 6 GHz is -7.76 dBm. Fig. 7 and Fig. 8 show that the proposed LNA is stable over wideband range.

A figure of merit (FOM) for evaluating the erformance of a wideband LNA, usually is used in papers, is defined as (9) [7]

$$FOM_1 = \frac{S_{21}.BW[GHz]}{(NF-1)P_D[mW]}$$
(9)

Since in LNA design the noise figure and the input matching impedance have more importance, the other FOM is defined as (10)

$$FOM_{2} = \frac{|S_{11}|.S_{21}.BW[GHz]}{(NF)^{2}.P_{D}[mW]}$$
(10)

where NF_{max} is used in both (9) and (10).

Majlesi Journal of Telecommunication Devices

The performance of the proposed high-flat-gain LNA is compared with other works, which is summarized in Table 1. Since, more other works are implemented on chip and their results are measured, for a correct comparison of the proposed LNA with other works, some of them are simulated by advance design system. It is found that the proposed LNA achieves a low noise figure, good gain flatness and good input and output matching. Also, stability of the LNA is very good. In addition, the LNA power consumption with its biasing circuit losses is low.

Fig. 2. Input and output reflection coefficients of proposed UWB LNA.

Fig. 3. Simulated S_{21} of the overall stage and the voltage gain of each stage.

Fig. 4. Power gain and isolation of proposed UWB LNA.

Frequency(GHz) **Fig. 8.** Stability factor (µ) of proposed UWB LNA.

Vol. 4, No. 4, December 2015

Majlesi Journal of Telecommunication Devices

Vol. 4, No. 4, December 2015

Reference	[1]	[2]	[5]	[6]	[10]	This work
Data	Simul.	Measu.	Simul.	Measu.	Simul.	Simul.
Process(nm)	180	90	180	180	180	180
SupplyVoltage(V)	1.5	1.2	2.25	-	1.8	1.5
BW(GHz)	3.1-10.6	2.6-10.2	3-10	0.5-11	3.1-10.6	2.7-10.6
Power(mW)	8.2	7.2	15.5	14.4	33.2	11
S ₁₁ (dB)	<-10	<-9	<-10	<-9	<-9	<-10.24
$S_{22}(dB)$	<-10.3	-	-	-	<-13	<-10.21
$S_{21}(dB)$	8.5-17.4	12.5	6-13.7	10.2	15.9-17.5	11.2-14.8
$S_{12}(dB)$	<-59	<-45	<-41.3	-	<-70	<-53
NF (dB)	4.1-5.8	3-7	2.8-5.5	3.9-4.5	3.1-5.7	3.12-4.3
P _{-1dB} (dBm)	-18	-12	-5.75	-	-	-17
IIP3(dBm)	-6.97	-	2.59	-9.1	-	-7.76
$FOM_1(GHz.mW^{-1})$	2.46	2.19	0.98	2.12	0.8	2.83
FOM ₂ (GHz.mW ⁻¹)	3.52	2.42	1.47	3.3	1.04	5.17

Table 1. Performance summary and comparsion to other CMOS UWB LNAs.

4. CONCLUSION

This paper has proposed a two-stage LNA topology for 3-10 GHz UWB applications. The proposed LNA is designed with TSMC 0.18- μ m CMOS technology. By using the input stage, a wideband input matching is achieved.

The low NF is obtained by using multi-finger transistors and resistance R_2 . By using R_3 , high and flat gain is achieved. The simulated maximum power gain is 14.8 dB and NF_{min} is 3.12 dB. The P_{-1dB} and IIP3 are -17 dBm and -7.76 dBm at 6 GHz, respectively. The total power consumption, including the buffer, is 20.73 mW with 1.5 V supply voltage. The proposed UWB LNA that is compared with other LNAs has low noise figure over the whole UWB, high gain, excellent gain flatness, very good stability, high bandwidth, and highest amount of figure of merits.

REFERENCES

- [1] R.-M. Weng, Ch.-Y. Liu, and P.-Ch. Lin, "A low-power full-band low-noise amplifier for ultrawideband receivers," *IEEE Trans. Microw. Theory Tech.*, Vol. 58, No. 8, pp. 2077-2083, Aug. 2010.
- [2] G. Sapone, and G. Palmisano, "A 3-10 GHz low-power CMOS low-noise amplifier for ultrawideband communication," *IEEE Trans. Microw. Theory Thec.*, Vol. 59, No. 3, pp. 678-686, Mar. 2011.
- [3] Y.-Sh. Lin, Ch.-Zh. Chen, H.-Y. Yang, Ch.-Ch. Chen, J.-H. Lee, G.-W. Huang, and Sh.-Sh. Lu, "Analysis and design of a CMOS UWB LNA with dual-RLCbranch wideband input matching network," *IEEE Trans. Microw. Theory Thec.*, Vol. 58, No. 2, pp. 287-296, Feb. 2010.
- [4] J.-Y. Lee, H.-K. Park, H.-J. Chang, and T.-Y. Yun, "Low- power UWB LNA with common-gate and current-reuse techniques," *IET Trans. Microw. Antennas Propag.*, Vol. 6, No. 7, pp. 793-799, 2012.

- [5] Y.-T. Lo, and J.-F. Kiang, "Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and commonsource stages," *IEEE Trans. Microw. Theory Tech.*, Vol. 59, No. 9, pp. 2285-2294, Sep. 2011.
- [6] Q.-T. Lia, and J.-F. Mao, "A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique," *IEEE Trans. Microw. Wireless Compon. Lett.*, Vol. 20, No. 5, pp. 280-282, May. 2010.
- [7] Y.-Sh. Lin, Ch.-Ch. Wang, G.-L. Lee, and Ch.-Ch. Chen, "High-performance wideband low-noise amplifier using enhanced π-match input network, " *IEEE Trans. Microw. Wireless Compon. Lett.*, accepted for inclusion, 2013.
- [8] K.-Ch. He, M.-T. Li, Ch.-M. Li, and J.-H. Tarng, "Parallel-RC feedback low-noise amplifier for UWB applications," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, Vol. 57, No. 8, pp. 582-586, Aug. 2010.
- [9] Ch.-T. Fu, Ch.-N. Kuo, and S.-S. Taylor, "Lownoise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching," *IEEE Trans. Microw. Theory Tech.*, Vol. 58, No. 4, pp. 795-806, Apr. 2010.
- [10] Y. Lu, K.-S. Yeo, J.-G. Do, and Z. Lu, "A novel CMOS low-noise amplifier design for 3.1-10.6 GHz ultra-wideband wireless receivers," *IEEE Trans. Circuits Syst. I, Fund Theory Appl.*, Vol. 53, No. 8, pp. 1683-1692, Aug. 2006.
- [11] E. Kargaran, H. Khosrowjerdi, K. Ghaffarzadegan and M. Kenarroodi, "A novel high gain two stage ultra-wide band CMOS LNA in 0.18µm technology," 5th European Conference on Circuits and Systems for Communications, pp. 90-92, Nov. 2010.
- [12] Y. Lu, Q. Tang, W. Li, G. Wu, and H. Qi, "Design of a 1GHz 4GHz ultra-wide band low noise amplifier," *IEEE* 2010.
- [13] Y.-H. Yu, Y.-J E. Chen, and D. Heo, "A 0.6-V low power UWB CMOS LNA," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, pp. 229-231, Mar. 2007.

Majlesi Journal of Telecommunication Devices

- [14] F. Zhang, and P. R. Kinget, "Low-power programmable gain CMOS distributed LNA," *IEEE J. Solid-State Circuits*, Vol. 41, No. 6, pp. 1333-1343, Jun. 2006.
- [15] D. Pepe, and D. Zito, "22.7-dB gain 19.7-dBm ICP 1dB UWB CMOS LNA," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, Vol. 56, No. 9, pp. 689-693, Sep. 2009.
- [16] B. Park, S. Choi, and S. Hong, "A low-noise amplifier with tunable interference rejection for 3.1-to 10.6-GHz UWB systems," *IEEE Microw. Wireless Compon. Lett.*, Vol. 20, No. 1, pp. 40-42, Jan. 2010.
- [17] C.-F. Liao, and S.-I. Liu, "A broadband noisecanceling CMOS LNA for 3.1-10.6-GHz UWB

Vol. 4, No. 4, December 2015

receivers, " *IEEE J. Solid-State Circuits*, Vol. 42, No. 2, pp. 329-339, Feb. 2007.

- [18] J.-H. Jung, T.-Y. Yun, and J.-H. Choi, "Ultrawideband low noise amplifier using a cascade feedback topology, "Microw. Opt. Tech. Lett., Vol. 48, No. 6, pp. 1102-1104, 2006.
- [19] A. Meaamar, B. C. Chey, D. M. Anh, and Y. K. Seng, "A 3-8 GHz low-noise CMOS amplifier," *IEEE Microw. Wirel. Compon. Lett.*, Vol. 19, No. 4, pp. 245-247, 2006.
- [20] M. T. Reiha, and J. R. Long, "A 1.2 V reactivefeedback 3.1-10.6 GHz low-noise amplifier in 0.13μm CMOS," *IEEE J. Solid-State Circuits*, Vol. 42, No. 5, pp. 1023-1033, May. 2007.