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ABSTRACT 

In this paper, formulation of the problem of plane wave diffraction by a wedge with anisotropic impedances is given 

for the case of almost grazing incidence. All steps of problem are given in detailed. Wedge is a canonic structure and 

diffraction from wedge may be used in modelling scattering from a variety of complex structures. In this study, by 

using the Maxwell’s equations the field components can be expressed in terms of z-components. By applying 

appropriate boundary conditions, a coupled system of equations is obtained in terms of field component and 

derivatives of field components with respect to   and r. By using similarity transform to the coupled system of 

equations, the coupling is reduced to the simplest form in which Malyuzhinets theorem can be applied. The solution of 

field components is sought in the form of Sommerfeld integrals. The Malyuzhinets theorem is applied to the 

Sommerfeld integrals. By using Sommerfeld integrals the problem is reduced to a system of coupled functional 

equations. Solution of homogeneous functional equations is given in terms of χф functions. For a small parameter of 

the problem (sinθ0<<1 where θ0 is the angle between z-axis and incident wave) the perturbation procedure is used to 

reduce the coupled functional equations to a system of linear equations with this small parameter being at the integral 

terms of equations. As a result the closed form solution is given for functional equations. The obtained analytic 

expression for the spectral functions is substituted to the Sommerfeld integrals, which are evaluated by means of 

steepest descent technique.Then, the analytical expressions for the diffraction coefficient for both magnetic and 

electric field components are derived. Considering these different geometries and small skewness angle, it is 

concluded that this approach enlarge the class of solvable diffraction problem in a small range. Additionally, the 

results are valuable for the comparison purposes for the other approximate methods. 

 

KEYWORDS: Impedance Wedge, Functional Equations, Sommerfeld Integrals, Maliuzhinets Theorem, Perturbation 

Procedure. 

 

1. INTRODUCTION 
As known, the solution of the problem of the scattering 

waves from complex shaped objects needs some well-

defined geometrical structure such as cylinder, strip, 

half-plane, sphere, ect. These structures are named as 

canonical structures. Wedge is also an important 

canonic structure for the electromagnetic scattering 

problems. Since the solutions for the wedge with 

parameters in a wide range may be used for the 

simulations of scattering from complex structures. The 

studies about the wedge diffraction problem date back 

to early 1950’s. There have been great deals of 

theoretical studies by using different techniques. 

The problem in the present work is started with to 

expression of the field components in terms of z-

components by using the Maxwell’s equations. These 

field components should satisfy the Helmholtz 

equation. Applying appropriate boundary conditions 

yields a differential equations system. For an arbitrary 

incidence case, the differential equations system is a 

coupled system. This coupled system may be 

transformed to uncoupled one for some special cases. 

In this study, similarity transform is used to reduce the 

coupling to  its simplest form. The solution of field 

components is sought in the form of Sommerfeld 

integrals. With the aim of getting to know the 

Malyuzhinets functional equations the Malyuzhinets 

theorem is applied to the Sommerfeld integrals. The 

solution of homogeneous functional equations is 

investigated. For a small parameter of the problem 

(sinθ0<<1 where θ0  is the angle between z-axis and 

incident wave) , the perturbation procedure is used to 

reduce the coupled functional equations to a system of 

linear equations with this small parameter being at the 

integral terms of equations. The obtained analytic 

expression for the spectral functions is substituted to 

the Sommerfeld integrals and Sommerfeld integrals are 

evaluated by means of steepest descent technique. The 
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numerical results are obtained for different parameters 

of the problem. 

There are great deals of investigation about the problem 

of wedge diffraction.  

Malyuzhinets (Malyuzhinets, 1950) solved the 

generalized problem with impedance boundary 

conditions on the wedge faces in his D.Sc. Dissertion. 

This study also described by Malyuzhinets (1955a, 

1955b, 1958a, 1958b), separately. The brief solution 

resumed by Malyuzhinets (1958c). His solution was 

reduced in the form of a Sommerfeld integral with an 

integrand involving a new special function Ψ(z).  

Williams (Williams, 1959) solved the problem of 

diffraction of an E-polarized plane wave by an 

imperfectly conducting wedge. The problem of the 

original boundary value is reduced to an ordinary 

difference equation. The wedge’s conductivity is large 

but it is not infinite. The first investigation of the effect 

of the conductivity is that E-polarized plane wave on 

the wedge is proportional to its normal derivative. This 

case is valid for H-polarized plane wave. But results of 

the solution are very complicated. 

Senior (Senior, 1959) gave a solution of the diffraction 

by an imperfectly conducting wedge. He used the 

Laplace transform, too. He took into account the case 

of finite conductivity. 

Malyuzhinets (Malyuzhinets, 1960) gave a short review 

of his method. 

The problem of the solution of a nonstationary problem 

of diffraction by an impedance wedge in tabulated 

functions was studied by Sakharova and Filippov 

(Sakharova and Filippov, 1967). Filippov (Filippov, 

1967) investigated the solution of a nonstationary 

problem of diffraction of a plane wave by an 

impedance wedge. 

Most of papers on this subject have examined the case 

of normal incidence. The problem’s the case of oblique 

incidence has been investigated by Bucci and 

Franceschetti (Bucci and Franceschetti, 1975). But they 

have been investigating the case of oblique incidence, 

the wedge aperture has been assumed to be zero. 

Bucci and Franceschetti (Bucci and Franceschetti, 

1976) studied the problem of the electromagnetic 

scattering by a half plane with two face impedances. 

The solution for the problem of electromagnetic 

scattering by a half plane with two different face 

impedances is presented for both normal and oblique 

incidence. Illustrative examples are discussed and a 

chart relative to the existence of surface wave 

contributions is presented. 

Vaccaro (Vaccaro, 1981) studied on electromagnetic 

diffraction from a right-angled wedge with soft 

conditions at one face. The diffraction of EM-plane 

wave from a wedge which has π/2-aperture is studied in 

the case of oblique incidence with respect to axis.        

Vaccaro’s studying deals with the case of oblique 

incidence. To this end, we make use of the generalized 

reflection method, pioneered by Maliuzhinets, and 

extend to EM-waves by Vaccaro.  

This method is efficient for both oblique and normal 

incidence because of the different wedge aperture. At 

the same time there can be different impedances on the 

two faces (Z
+
 or Z

-
). Hence, the solution of the problem 

becomes easier. The boundary conditions are 

transformed into functional difference equations, which 

are solved in a closed form. The utter solution for the 

field is given under the form of a Sommerfeld integral 

of simple trigonometric functions. 

 Mohsen (Mohsen, 1982) studied on the diffraction of 

an arbitrary wave by a wedge. He gave generalizations 

to some of the previous investigations. 

Kim, Ra and Shin (Kim et. al., 1983), took into account 

the calculation of edge diffraction by a right-angled 

dielectric wedge. Then they had extended to a dielectric 

wedge of general angle in the study. 

Senior and Volakis (Senior and Volakis, 1986) dealt 

with the problem of electromagnetic wave at oblique 

incidence on a right-angled imperfectly conducting 

wedge. One of wedge face is perfect conductor, while 

another is imperfect conductor. An exact integral 

expression for the total field is derived. The need is 

critical that if one of wedge’s faces is imperfect 

conductor. The solution is obtained by a generalization 

of Maliuzhinets’ technique. A uniform solution was 

derived in accordance with the UAT (Uniform 

Asymptotic Theory). If a plane wave is incident on the 

perfect conductor face of the wedge, computed data for 

the total field was found to be almost independent 

according to another face.  

Tiberio, Pelosi, Manara and Pathak (Tiberio et. al., 

1989) studied for the solution of High-Frequency 

Scattering from a wedge with impedance faces 

illuminated by a Line Source. A plane wave scatters 

from edges in nonperfectly conducting surfaces. Hence, 

surface impedance boundary conditions are important 

to be may provide a useful model is a important 

canonical problem in the geometrical theory of 

diffraction. An exact solution of this problem when a 

plane wave is right-angled on wedge’s edge was given 

by Maliuzhinets. Because of this solution was found 

useful, this solution has been wanted to extend on some 

special cases. First of all, without “High-Frequency”, 

Scattering from a wedge with impedance faces 

illuminated by a line source has examined in Part-1 of 

this solution. The main aim of this solution is the 

evaluation of the field scattered from a two-

dimensional impedance wedge. This solution deals 

with two important aspects. First one is that of deriving 

uniform asymptotic solution for the diffracted field. 

Second one is that of examining the effect of wavefront 

curvature. 
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Because of two important aspects, this solution has 

been divided into two parts. While both source and 

observation points are located at finite distance from 

the wedge’s edge, the two-dimensional problem of the 

diffraction has been investigated. Both the plane wave 

and far-field response of the wedge have been used to 

derive an exact integral representation for the total 

field. 

Rawlins (Rawlins, 1990) produced a solution about the 

boundary-value problem depended on the physical 

problem of diffraction of an E- or H-polarized plane 

wave incident on a imperfectly conducting right-angled 

wedge. 

Liu and Ciric (Liu and Ciric, 1993) improved formulas 

for the diffraction by a wedge. These formulas are 

about new analytical expressions for the diffraction 

integral in the case of a perfectly conducting wedge of 

an arbitrary angle illuminated by a plane wave or by a 

line source field. 

The Malyuzhinets technique is reviewed by Osipov and 

Norris (Osipov and Norris, 1999). They focused around 

the basic problem of determining the wave field 

scattered from the edge of a wedge of exterior angle 2ø 

with arbitrary impedance conditions on either face. 

They begin by establishing a direct relationship 

between the Sommerfeld integral representation and the 

Laplace transform. This provides fresh insight into 

Maliuzhinets’ inferences about functions representable 

via the Sommerfeld integral and, simultaneously, 

allows us to prove both the inversion formula for the 

Sommerfeld integral and the crucial nullification 

theorem. 

Osipov and Norris (Osipov and Norris, 1999) tried to 

find a solution for the basic problem of determining the 

far-field scattered from the edge of a wedge of exterior 

angle 2ø with arbitrary impedance conditions on both 

faces of the wedge. 

Lyalinov and Zhu (Lyalinov and Zhu, 1999) studied the 

problem of the diffraction of a skewly incident plane 

wave by an anisotropic impedance wedge. The 

Sommerfeld-Malyuzhinets’ technique and the special 

function χø , which is originally introduced in the study 

of wave diffraction by a wedge located in a gyroelectric 

medium, have been used to find the exact solution for 

diffraction of a skewly incident and arbitrarily 

polarized plane wave by wedges with an arbitrary 

opening angle. 

 The problem of the diffraction of plane waves by a 

two-impedance wedge in cold plasma is studied by Ġkiz 

and Karaömerlioğlu (Ġkiz and Karaömerlioğlu, 2004). 

A two-impedance wedge in cold plasma may 

practically be used in modeling the electromagnetic 

scattering from a variety of large and complex objects. 

As known many investigations have been done about 

the scattering by wedge. But while investigations were 

done, some cases had been taken into account. For 

example; certain opening angles of the wedge, certain 

incidence angles and some specific values of wedge 

surface impedance. The aim of study is abolish the 

limited cases. It is believed that solution at the end of 

this study should be useful for comparison purposes for 

more general analytic solutions to be found and for 

checking the other numerical methods proposed for 

investigating wave diffraction by anisotropic 

impedance wedges. 

  

2. FORMULATION OF THE PROBLEM 
The problem under consideration is a wedge with a 

wedge opening angle 2Φ, where the edge coincides 

with the z-axis. The direction of propagation of 

incidence wave is specified by the angles 0    and 0   

as shown in figure1.   

 

 
Fig. 1. The Geometry of the Problem 

 

Φ is the angle between wedge faces and x-axis. The 

skewness angle, θo is between the incident wave and z-

axis.  “(r,  )” represents observation point. 

The z-component of the incident wave is given by, 
' ''
0 0 0( cos( ) )

0 0 .( , ) ik r ik zi i T
z zZ H E V e             (1) 

 

Where 
'

0 0 0sink k  , ''

0 0 0cosk k  , 

1/2

0 0 0( / )Z    and 0  is the skewness angle.  

The vector 0( , )V r   is defined as, 

 

0 10 20( , ) ( , ) .TV r V V 
                                            (2) 

 

Due to the invariance of the wedge geometry and the 

tensor impedance with respect to  z, the z-component of 

the total field behave as,  
''
0

0( , ) ( , )
ik z

z zZ H E V r e
                                      (3) 
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where the vector ( , )V r   is given as, 

'
0 0cos( )

0 1 2( , ) ( , ) .
ik rTV r V V e

   


                          (4) 

 

Outside of the wedge ( , )V r   must satisfy the 

scalar
 
Helmholtz

 
equation

 
 

' 2

02 2

1 1
( ) ( ) ( , ) 0r k V r

r r r r




   
   

   
     (5) 

 

The following anisotropic surface impedance
 
 

 

11 12 21 22
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )r z r r z za a a a a a       

          (6) 

 

and the anisotropic impedance boundary condition  

 

ˆ ˆ ˆ. ( )n n na E a a H   
                                       (7) 

 

Will be used to derive the coupled differential 

equations in the next section. 

 

3. APPLICATION OF BOUNDARY 

CONDITIONS  

The electric and magnetic field vectors can be 

expressed in cylindrical coordinate systems as follows: 

 

ˆ ˆ ˆ
r r z zE E a E a E a   

                                       (8) 

 

ˆ ˆ ˆ .r r z zH H a H a H a   
                 (9)

 

 

Since at      

 

12 22r r zE H H   
                                         (10) 

 

11 21 .z r zE H H    
                            (11) 

From the second equation(11); 

 

21

11 11

1
r z zH E H



 



 
  

                                       
(12) 

 

By substituting (12) into (10), 

 

 

12 12 21
22

11 11

.r z zE E H
  


 

  


 

 
    

 
                  (13)

 

The r-components of the fields can be derived in terms 

of z and derivative of the z-components of the fields by 

using Maxwell equations. 

 

0
02

0 0

( )1
cos .

sin

z z
r

Z H Ei
E

k r r


 

  
  

  
         (14) 

 

and 

0 02

0 0 0

1
cos ( ) .

sin

z
r z

Ei
H Z H

k Z r r


 

  
   

  
        

(15) 

Using (14, 15)  in (12, 13). 

 

0
02

0 0

22 12 21
22

11 11

( )1
cos

sin

z z

z z

Z H Ei

k r r

E H


 

  


 

  


 

  
  

  

 
   

 

      (16) 

 

and 

 

0 02

0 0 0

22

11 11

1
cos ( )

sin

1
.

z
z

z z

Ei
Z H

k Z r r

E H


 



 



 

  
   

  

 
    (17) 

 

are obtained. 

 

By rearranging  (16-17); 

 

2 12 21 12
0 0 22

0 11 11

0

0

( ) sin ( )

cos

z z z

z

i
Z H H E

rk

Ei

k r r

  
 

  



  


 

 
    

  

 
 
 

                                                                                  (18) 

 

and 

2 21
0 0 0

0 11 11

0 0

0

1
sin

cos ( )

z
z z

z

Ei
Z H Z E

rk

i
Z H

k r r




  





 

 
   

  





                             

(19) 
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are obtained. Using 

' .sino o ok k 
 equations (18) and 

(19) may be combined by the matrix form. 

0

'

0

12 21 12
22 0

011 11

0

021

11 11

0

0'

0

( ) /

sin .

0 1
cos

1 0

z

z

z

z

z

z

Z Hi

Erk

Z
Z H

EZ

Z Hi

Erk r



  


 




 



  


 



 

 
 

  

 
  

       
  
 

   
  

   
                                                                    (20) 

 

4. SIMILARITY TRANSFORMATION 

This equation 

0'

0

0'

0

( , )
sin ( , )

cos ( , )

i V r
A V r

rk

i
B V r

rk r


 



 

 
   







       (21) 

reduce to 

1 11

0'

2 20

11

0'

20

sin

cos .

u ui
P A P

u urk

ui
P BP

urk r

   

 






 

 





   
     

    

 
 

  

 

                                                                     (22)
 

By using similarity transform to the coupled system of 

equations, the coupling is reduced to the simplest form 

in which Maluizhinets theorem can be applied. 

1 1

2

.
u

P V
u

 
 

                               (23) 

It is obvious that u also satisfies Helmholtz equation 

and the solution in terms of Sommerfeld integral is, 

 

'
0 cos1

( , ) ( )
2

irk

j ju r e f d
i





   



              (24) 

 

5. MALIUZHINETS THEOREM  

If 

'
0 cos1

( ) 0
2

ik r d
f e

i

 









                       (25)
 

 

Let  ( )f   be regular function inside the loop γ+ and 

γ- everywhere, besides the possible exception at 

infinity, and satisfies the estimate 

 

( ) 0(exp( 1 ) Im ),f n a   
  

Im 
 

                                                        (26) 

where 0 1   and n 0  is an integer. Then
 

 

1

1

( ) ( ) sin cos
n

v

e v

v

f f C   



  
             (27)

 

 

where ( )ef   is an arbitrary even function, and vC  

are arbitrary constants. As a corollary,   ( )f   should 

satisfy the functional equations of 

 

1

1

( ) ( ) sin cos .
n

v

v

v

f f C   



   
              (28) 

the resultant functional equations are; 

1 1

1 1

12 2 2

(sin( ) sin ) ( )

( sin( ) sin ) ( )

( ( ) ( )).

f

f

q f f

    

    

   







   

    

              
(29) 

 

2 2

2 2

21 1 1

(sin( ) sin ) ( )

( sin( ) sin ) ( )

( ( ) ( )).

f

f

q f f

    

    

   







   

    

     
                   (30) 

 

6. CLOSED FORM SOLUTION  

Let us assume that, the unknown functions 1f   and 2f   

may be represented in    terms of two new unknown 

functions 1    and 2   , such as 

 

01 10 1( ) ( ) ( ) ( )f f      
                              (31) 

 

02 20 2( ) ( ) ( ) ( )f f      
                             (32) 

 

where 

 

0

0

0

cos( )
( )

sin sin


 
 

 


  , 2







          (33) 

 

which satisfies that, 
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0 0
( ) ( )         

                                  (34) 

 

and,  10 ( )f    and 20 ( )f   are the homogeneous  

solutions of  equations (29)   and (30) which is given 

by; 

0

( ( 1) )

( ( 1) )

( ( 1) )

( ( 1) )

( ( 1) )

( ( 1) )

( ( 1) )
.

( ( 1) )

j

j

j j

j

j

j

j

j

j

j

j

j

j

j

j

j

f
















     

     

    

    

     

     

    

    

















    
 

    

   

   

    
 

    

   

   

              (35) 

 

By using S integral theory 1( )    and 2 ( )   are 

determined as, 
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and, 
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where 

sin
( , ) .

cos ( 1) sin
j j

z
z

z z


 

 


                     (38) 

 

For small 0  0(sin 0)   the right hand side of (36) 

and (37) approaches to zero and therefore perturbation 

theory can be used.  

 

7. NUMERICAL RESULTS 

In figure 2 the variation of diffraction coefficient D1 

with respect to the observation angle for different 

opening angles and skewness angles are given. As 

shown in this figures, D1 decrease dramatically with 

increasing skewness angle, while there is no such a 

dependence between D2 and skewness angle as shown 

in figure 3. 

In figures 4 and 5 the variation of D1 and D2 with 

respect to o  are given. While o  increases, both of 

D1 and D2 also increase. 

In figure 6 the variations of D1 and D2 with respect to 

the surface impedances are given. While values of 

surface impedances increase both of D1 and D2 increase 

also.  

 

 

Fig. 2: Diffraction coefficient 10log10 1( )D   versus 

observation angle with Φ=135
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Fig. 3: Diffraction coefficient 10log10 2( )D   versus 

observation angle with Φ=135
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Fig.  4: Diffraction coefficient 10log10 1( )D   versus 

observation angle with Φ=135
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Fig. 5: Diffraction coefficient 10log10 2( )D   versus 

observation angle with Φ=135
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Fig. 6: Diffraction coefficient 10log10 2( )D   versus 

observation angle with Φ=135
o
, Ø0=0

o
, 0 =1

o
 

 

8. CONCLUSION 

In this paper, formulation of the problem of plane wave 

diffraction by a wedge with anisotropic impedances is 

given for the case of almost grazing incidence. Even 

though there are numerous studies about the effects of 

impedance wedge on the propagation of 

electromagnetic waves, for some specific wedge 

opening angle, surface impedance and incidence angle, 

the diffraction from an arbitrary wedge for almost 

grazing incidence case is being investigated for the first 

time in this paper. For a small parameter of the 

problem, the perturbation procedure enables us to 

reduce the coupled functional equations to a set of 

linear equations. 
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One of the advantages of this study, using these values 

of opening angles, the results for the related geometries 

can be obtained easily. Considering these different 

geometries and small skewness angle, we conclude that 

this approach enlarge the class of solvable diffraction 

problem in a small range. Additionally, we hope that, 

the results are valuable for the comparison purposes for 

the other approximate methods. 
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