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ABSTARCT 

This paper presents a study of hard combination data fusion for cooperative spectrum sensing in Cognitive Radio 

(CR). Fast and accurate spectrum sensing is crucial in realizing a reliable cognitive network. Cooperative spectrum 

sensing can help reducing the mean detection time and increasing the agility of the sensing process. However, when 

the number of cognitive users is large, the bandwidth need for the control channel that are used to report the secondary 

user nodes’ results to the fusion center may become excessively large. This paper presents a hard decision-based 

cooperative sequential detection scheme to reduce the average sensing time that is required to reach a detection 

decision. In the scheme, each cognitive radio computes the log likelihood ratio for its every measurement, and 

quantizes its measurements then sends its hard-decision to base station and the base station sequentially accumulates 

these log likelihood statistics and determines whether to stop making measurement.  
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1. INTRODUCTION 

In recent years, cognitive radio (CR) has emerged as a 

promising paradigm for exploiting the spectrum 

opportunity, which is restricted by the current rigid 

spectrum allocation scheme, to solve the spectrum 

scarcity problem [1][2].  

In the U.S.,the spectrum is traditionally assigned by the 

Federal Communications Commission (FCC) to 

specific users or applications, and each user can only 

utilize its preassigned bandwidth for communication. 

This discipline causes some bandwidth to be 

overcrowded while some other bandwidth may be 

underutilized. 

Dynamic spectrum access based on cognitive radios 

has been proposed in order to opportunistically use  

underutilized spectrum portions of the licensed 

electromagnetic spectrum [3]. Cognitive radios  

opportunistically share the spectrum while avoiding 

any harmful interference to the primary licensed users. 

Cognitive radio aims at providing a flexible way of 

spectrum management, permitting secondary users to 

temporally access spectrum that is not used by legacy 

users. In this regard, the FCC has taken a number of 

steps in the U.S. towards allowing low-power devices 

to operate in the broadcast TV bands that are not being 

used by TV channels [5]. The U.S. TV bands include 

the following portions of the VHF and UHF radio 

spectrum: 54–72, 76–88, 174–216, and 470–806  MHz. 

Each TV channel occupies a slot of 6-MHz bandwidth. 

If a TV frequency band is not used in a particular 

geographical region, it can be used by cognitive radios 

for transmission. To promote this development, IEEE 

has established the IEEE 802.22 Working Group to 

develop a standard for a cognitive radio-based device in 

TV bands [6]. A key challenge in the development of 

the IEEE 802.22 standard is that a cognitive radio 

should be able to reliably detect the presence of TV 

signals in a fading environment. Otherwise, the radio 

may use the frequency band that is occupied by a TV 

channel, and cause interference to the TV receivers 

nearby. Many sensing and detection schemes have been 

reported in the IEEE 802.22 community, e.g., [7]–[12]. 

These schemes can be classified into two categories: 

single-user sensing and cooperative sensing. Due to the 

large variation in the received signal strength that is 

caused by path loss and fading, single-user sensing has 

proven to be unreliable, which consequently triggered 

the FCC to require geolocation-based methods for 
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identifying unused frequency bands [13], [14]. The 

geolocation approach is suitable for registered TV 

bands; however, its cost and operational overhead 

prevent its wide use in the opportunistic access to 

occasional “white spaces” in the spectrum. Cooperative 

sensing relies on multiple radios to detect the presence 

of primary users and provides a reliable solution for 

cognitive radio networks [10]–[12]. In this paper, we 

focus on how to achieve cooperative sensing in an 

efficient and robust manner. The performance of 

spectrum sensing is usually measured by two key 

factors: probability of detection errors and sensing 

time. The traditional way to design a sensing strategy is 

based on the Neyman–Pearson criterion, and the 

resulting likelihood ratio test (LRT) fixes the number of 

required samples or the sensing time. In this 

framework, the probability of false alarm is required to 

be less than a predefined level, and under this 

constraint, the probability of miss detection is 

optimized (minimized) by the proposed test [15]. In 

contrast to the Neyman–Pearson framework, another 

design methodology is to minimize the required 

sensing time, subject to a constraint on the detection 

errors [16]–[18]. The resulting test is called the 

sequential probability ratio test (SPRT) and was first 

developed in the seminal work by Wald [19]. A recent 

exposition about the theory behind the test can be 

found in [20]. Some recent papers have applied this 

technique to spectrum sensing for cognitive radio 

networks, e.g., [21] and [22]. In the scheme proposed in 

[21], the autocorrelation coefficient based log-

likelihood ratios from different cognitive radios are 

combined in a sequential manner at the base station for 

quickly detecting the primary user. In [22], the 

sequential detection method is applied to the detection 

of cyclostationary features in the received signals. 

These techniques can reduce the sensing time and the 

amount of signal samples required in identifying the 

unused spectrum. In this paper, we extend previous 

work on the sequential detection method for 

collaborative spectrum sensing. 

 In the proposed framework, each cognitive radio 

computes the log-likelihood ratio then quantizes the 

results with use hard decision output to three levels .

then sends these results to base station for its every 

measurement, and the base station sequentially 

accumulates the log-likelihood  tatisticsand determines 

whether to stop making new measurement.  

Due to uncertainties caused by fading and interference, 

we normally do not have exact information about some 

signal parameters, such as signal strength and noise 

variance. It is thus important to make the sequential 

detection algorithm sufficiently robust to the 

uncertainties in unknown parameters. Different from 

previous work which assumes complete knowledge 

about the distributions of the measurements, our work 

modifies the original SPRT in order to handle unknown 

parameters in the assumed signal models. In our 

proposed solution, unknown parameters are 

sequentially estimated by the maximum likelihood 

estimation, and the sequential detection algorithm is 

performed by using the estimated parameters. By doing 

so, the average sensing time depends on the signal 

conditions, rather than being fixed as in the Neyman–

Pearson approach. With proper stopping conditions, the 

proposed scheme guarantees to achieve the desired 

sensing performance in terms of the probability of false 

alarm and miss detection. These ideas are illustrated 

through two spectrum sensing examples. One assumes 

both the signal and noise are Gaussian distributed, 

while the other assumes the target signal is 

deterministic. Throughout this paper, we adopt the 

following definitions and notations.  

 

2. SYSTEM MODEL 

Unlike censoring model, where each user collects a 

specific number of samples, in this section, each 

cognitive radio sequentially senses the spectrum and 

upon reaching a decision about the presence or absence 

of the primary user, it sends the result to the FC. The 

FC then collects the received LLRs and as soon as their 

sum is larger than an upper threshold or smaller than a 

lower threshold, the decision is made and the sensors 

can stop sensing. The LLRs are transmitted in such a 

way that the larger LLRs are sent sooner. The results 

are shown that the number of transmissions 

considerably reduces and particularly when the 

transmission energy is high, this approach performs 

very well. The final decision is then made at the FC . 

Here, a hard decision truncated sequential sensing 

scheme is employed where each cognitive radio carries 

on sensing until it reaches a decision while not passing 

a limit of samples. We define N samples. A network of 

M cognitive radios is considered under a cooperative 

spectrum sensing scheme. A parallel detection 

configuration is employed as shown in Fig. 1. Each 

cognitive radio senses the spectrum and makes a local 

decision about the presence or absence of the primary 

user and informs the FC by employing a censoring 

policy. The final decision is then made at the FC. 

 

 
Fig. 1.system model [22] 
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The two hypotheses corresponding to the signal-absent 

and signal present events are defined as: 

 

     Target signal is absent. 

    Target signal is present. 

 

 The signal acquired by the mth (m = 1, 2,…, M) 

cognitive radio device is represented by : 

 

     [n]=     [n], 

     [n]=     [n], n=1,2,….                                   (1) 

 

Where     [n], is the nth acquired signal sample when 

the target signal is present and     [n] is the nth 

acquired noise signal sample when the target signal is 

absent. The samples   [n]  can be either a scalar or a 

vector, depending on the application of interest. 

Throughout the paper, we assume that the samples 

acquired by different radios are statistically 

independent, and that the samples acquired by the same 

radio are independent and identically distributed 

(i.i.d.).Under    and    , the distributions of the 

acquired signal at the mth radio are characterized by 

the probability density functions        [n]) and 

       [n]) respectively. The performance of 

detecting against is measured by the probability of false 

alarm and the probability of miss detection. The error 

of false alarm refers to the error of accepting    when 

   is true, while the error of miss detection is the error 

of accepting    when    is true. 

The probability of false alarm is represented by: 

  

           ̂ =   │   )                                             (2)   

 

and the probability of miss detection is represented by: 

 

              ̂ =   │   )                                         (3) 

 

Where  ̂ represents the detector output.  

 

3.  RELATED WORK TO SEQUENTIAL 

SENSING  

Sequential detection as an approach to reduce the 

average number of sensors required to reach a decision 

is also studied comprehensively during the past decades 

[14]–[19]. In [14], [15], each sensor collects a sequence 

of observations, constructs a summary message and 

passes it on to the FC and all other sensors. A Bayesian 

problem formulation comprising the minimization of 

the average error detection probability and sampling 

time cost over all admissible decision policies at the FC 

and all possible local decision functions at each sensor 

is then considered to determine the optimal stopping 

and decision rule. Further, algorithms to solve the 

optimization problem for both infinite and finite 

horizon are given. In [16], an infinite horizon sequential 

detection scheme based on the sequential probability 

ratio test (SPRT) at both the sensors and the FC is 

considered. Wald’s analysis of error probability, [20], 

is employed to determine the thresholds at the sensors 

and the FC. A combination of sequential detection and 

censoring is considered in [17]. Each sensor computes 

the LLR of the received sample and sends it to the FC, 

if it is deemed to be in a certain region. The FC then 

collects the received LLRs and as soon as their sum is 

larger than an upper threshold or smaller than a lower 

threshold, the decision is made and the sensors can stop 

sensing. The LLRs are transmitted in such a way that 

the larger LLRs are sent sooner. It is shown that the 

number of transmissions considerably reduces and 

particularly when the transmission energy is high, this 

approach performs very well. However, our paper 

employs a hard fusion scheme at the FC, our sequential 

scheme is finite horizon, and further a clear 

optimization problem is given to optimize the energy 

consumption. Since we employ the OR (or the AND) 

rule in our paper, the FC can decide for the presence (or 

absence) of the primary user by only receiving a single 

one (or zero). Hence, ordered transmission can be 

easily incorporated in our paper by stopping the sensing 

and transmission procedure as soon as one cognitive 

radio sends a one (or zero) to the FC. A truncated 

sequential sensing technique is employed in [19] to 

reduce the sensing time of a cognitive radio system. 

The thresholds are determined such that a certain 

probability of false alarm and detection are obtained. In 

this paper, we are employing a similar technique, 

except that in [19], after the truncation point, a single 

threshold scheme is used to make a final decision, 

while in our paper, the sensor decision is censored if no 

decision is made before the truncation point. Further, 

[19] considers a single sensor detection scheme while 

we employ a distributed cooperative sensing system 

and finally, in our paper an explicit optimization 

problem is given to find the sensing parameters. 

 

4. SEQUENTIAL SENSING FOR SIMPLE 

HYPOTHESES  

To begin with, assume that the number      of samples 

(acquired by each cognitive radio) is fixed. To detect 

   and    , the likelihood ratio test (LRT) is performed 

according to : 

 

Accept    if   LLR     
Accept    if    LLR                                             (4) 

 

Where the log-likelihood ratio (LLR) is computed by 

the base station as: 

 

LLR = ∑ ∑      
      [ ])

      [ ])
 ) 

   
 
                                  (5) 
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The threshold value η and the sample size      are 

selected such that the probability of false alarm and the 

probability of miss detection are bounded by some pre-

assigned values 0    𝛼  > 1 and 0    𝛽  > 1, respectively, 

i.e.  

PFA     𝛼 and  PMISS  𝛽                (6) 

 

To do so, the distributions of the test statistic, i.e., the 

LLR, under    and   need to be determined. The 

computation of the distributions is usually not easy and 

may involve complex numerical computations or 

simulations. To reduce the number of required samples, 

instead of using  a fixed sample size      , we can 

implement the LRT for every acquired sample in a 

sequential manner motivated by Wald’s work [19]. That 

is, for N=1, 2,…, we perform the following test: 

 

Accept                  if LLR     
Accept                   if LLR    

 

Take one more sample to Repeat the test if  

B            

 

Where 
 

LLRN =∑ ∑   (
       [ ])

       [ ])
)       

   
 
                 (7)  

 
  > 0 and B < 0 are predetermined constants according 

to the sensing objective (2). In the context of 

cooperative sensing, each radio computes the log-

likelihood ratio for its every acquired sample, and the 

base station sequentially accumulates the log likelihood 

statistics and performs the above test, as described in 

Algorithm 1. 

 

4.1. Algorithm: Cooperative Sequential Sensing for 

Simple Hypotheses 

0: Set N=0, and let       = 0   at the base station. 

1: repeat 

2: N=N+1. 

3: The mth (m=1,2,..,M) radio acquires sample   [N] 

and computes   (
       [ ])

       [ ])
)                                             

4:  Each radio compute its    (
       [ ])

       [ ])
) ,then sends 

its hard decision results to the base station. 

 

5: The base station updates the sequential log-

likelihood ratio LLRN  according to: 

 

LLRN = LLRN-1 + ∑ ∑   (
       [ ])

       [ ])
)    

   
 
    

 

6: until      LLRN         or       LLRN     . 

 

7: If LLRN      , “  : target signal is present” is 

claimed; if , LLRN     , “   : target signal is absent” 

is claimed. 

 

5. RESULTING SIMULATION  
In this section, we evaluate the average sample number 

of sequential spectrum sensing with use likelihood ratio 

test by computer simulations. also we simulate the 

proposed cooperative sequential sensing scheme .The 

simulated network has twelve cognitive radios for 

spectrum sensing. i.e. M=12. We also suppose thirty 

samples for each cognitive radio, i.e.N=30. In the 

simulations, the sensing objective is set according to 

(6) with 𝛼   𝛽     . 

In this scenario, the noise is Gaussian distributed with 

zero mean and the target signal is Gaussian distributed 

too. The base station has full knowledge of the 

distributions of the signal and noise. In fig.3-6 are 

shown histogram of the required sample in the 

proposed scheme in different SNRs .It is observed that 

the sequential method substantially reduces the sensing 

time with reducing the number of samples. 

 

 
Fig. 2. -histogram of Nstop in 10dB 

 

 
Fig. 3.histogram of Nstop in 0dB 
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Fig. 4. histogram of Nstop in -10dB 

 

The simulation results are shown in Fig. 6. Note that 

with shown sequential method, result of probability 

detection is optimizing. In Fig.5 shown with increase 

number of CRs probability of miss-detection will be 

low. 

 

Fig. 5.probability of detection with increasing number of 

cognitive radio in sequential detection 
 

6.  CONCLUSION 

In this study, we have proposed a hard decision-based 

sequential spectrum sensing scheme by combining hard 

decision-based cooperative sensing and sequential 

probability ratio test and likelihood ratio test. It has been 

found that sequential detection significantly reduces the 

average sample number and sensing time while retaining 

comparable detection performance compare energy 

detection. 
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