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ABSTRACT: 
Cognitive radios utilize spectrum sensors to provide information about the surrounding radio environment. This 
enables cognitive radios to communicate at the same frequency bands with existing (primary) radio systems, and 
thereby improve the utilization of spectral resources. Furthermore, the spectrum sensor must be able to guarantee that 
the cognitive radio devices do not interfere with the primary system transmissions. This paper describes a hardware 
implementation of a spectrum sensor based on cyclostationary feature detector, which has an improved detection 
performance achieved by decimation of the cyclic spectrum. Decimation also provides a simple way to control 
detection time and, therefore, allows trading the detection time to better probability of detection and vice versa. 
Implementation complexity in terms of power consumption and silicon area for a 65 nm CMOS process is evaluated. 
Measured detection performance is presented and detection of a 802.11g WLAN signal through air interface is 
demonstrated. 
 
KEYWORDS: cognitive radio, CR, wireless, spectrum sensing, feature detector, cyclostationary, FPGA. 
  
1.  INTRODUCTION 

As wireless communications systems evolve, 
demand for spectral resources is continuously growing. 
However, traditional frequency allocation policy has 
resulted in a situation where unallocated spectrum 
bands are running short, while measurements have 
shown that spectrum utilization in already allocated 
bands is usually low. 

Cognitive radios (CR) [1][2] promise a solution for 
taking advantage of underutilized spectral resources 
and have been a popular research topic for several 
years. Cognitive radio’s capability to recognize the 
surrounding radio environment and operate accordingly 
(i.e. change operation frequency, modulation etc.) 
permits operation among existing communication 
systems without interfering the primary users. This 
enables major increase in spectrum utilization. 

To produce awareness of the surrounding radio 
spectrum, cognitive radio device needs to incorporate a 
spectrum sensing unit, which is able to sense spectral 
opportunities reliably and at very low signal-to-noise 
ratios (SNR). Furthermore, appearance of the primary 
user must be detected in reasonable time to minimize 
interference produced by the secondary network to the 
primary system. 

Spectrum sensing can be implemented for example 
with energy detectors or feature detectors such as 

cyclostationary based detectors [3][4]. Energy detectors 
are very simple to implement, but their performance 
degrades when noise levels are unknown and they are 
also incapable to differentiate between signals from 
various systems [5]. Therefore, energy detectors are 
best suited for fast and coarse spectrum scanning. 
Feature detectors, in general, can operate reliably at 
very low SNR levels and can also differentiate certain 
signal types from others. 

Much of the recent work is concentrated on 
IEEE802.22 [6]-[8], which is the first standard based 
on cognitive radio technology. It defines a radio 
interface for Wireless Regional Access Network 
(WRAN) that operates at the frequency bands currently 
mainly occupied by digital TV broadcast services. In 
IEEE802.22 networks, sensing task is somewhat 
simplified due to two facts. Firstly, primary signals that 
must be detected include only DTV broadcasts and Part 
74 (wireless microphones etc.) transmissions and, thus, 
purpose-built sensing algorithms can be used. 
Secondly, locations of both base stations and customer 
equipment are fixed, which relaxes implementation 
constraints. Practical spectrums sensor implementations 
for DTV bands have been presented in [9]. 

A more general approach is taken in this work. The 
detection algorithm, presented in Section 2, is based on 
cyclostationarity that the received signal inherits for 
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example from modulation, cyclic prefixes or spreading 
codes. Since the parameters are system dependent, 
cyclostationarity can be used to identify the received 
signal. Detectors based on cyclostationarity have been 
presented in [10]-[12]. Effort is put especially on 
identifying OFDM-based (orthogonal frequency 
division multiplex) systems (e.g. WLAN, DVB-T, 
LTE), which is likely to be used in many future 
systems, but the concept is extendable to other signal 
types as well [13]. 

In general, detector performance is characterized by 
two metrics: probability of detection and false alarm 
rate. They are both equally important, since low 
probability of detection increases the amount of 
interference inflicted on the primary users, whereas 
high false alarm rate increases the amount of missed 
spectral opportunities in the secondary network. Other 
important parameters are the detection time resolution 
and bandwidth, and, of course, power consumption and 
area of the implementation. 

This paper is organized as follows: Section 2 
presents the cyclostationary feature detection algorithm 
and shows how decimation can be utilized to control 
the detection time, therefore resulting in fixed-length 
FFT implementation. Section 3 describes both the 
algorithm implementation and the hardware used to 
implement the spectrum sensor prototype platform. 
Section 4 then presents measured detector performance 
(probability of detection) and compares it to ideal 
performance from Matlab simulations. Moreover, over-
the-air sensing is demonstrated with 802.11g WLAN 
signal. Finally, a conclusion is given in Section 5. 
 
2.  ALGORITHM DESCRIPTION 

A process x(t) is second-order cyclostationary if its 
mean and autocorrelation are periodic in time [14]. 
Thus, for a cyclostationary process, the cyclic 
autocorrelation function (CAF) is nonzero for a set of 
cyclic frequencies α ≠ 0. Here, we concentrate on 
signals that exhibit conjugate cyclostationarity such as 
OFDM signals. The conjugate cyclic autocorrelation 
function at cyclic frequency α can be estimated as R෡୶஑ = ଵே෍ xሺnሻx∗ሺn − τሻeିౠమಘಉ౤ొ = R୶஑ + εሺαሻ୒ିଵ௡ୀ଴  (1)  

in which ε(α) is the estimation error. Here, τ is lag 
parameter in the autocorrelation. In practice, values of 
the CAF are seldom exactly zero and decision has to be 
made whether the value presents a zero or not. 

If the cyclic autocorrelation does not exist, ܴ௫∝ = 0 
and ෠ܴ௫∝ =  ሻ, which is asymptotically normal zeroߙሺߝ
mean complex random variable R෡୶஑ = ሻߙሺߝ = ܺሺߙሻ + ݆ܻሺߙሻ (2)  
X(α) and Y(α) are normal distributed zero mean 
random variables. For vector of zero mean random 
variables, an estimate of the covariance matrix can be 
computed as 

Σ෠ଶୡ = ൤ܧሾܺଶሿ ሾܻܺሿܧሾܻܺሿܧ ሾܻଶሿ൨ (3)ܧ

where elements of the matrix are ܧሾܺଶሿ= 
ଵே෍ ℜ൛R෡୶஑ౡൟଶ୒ିଵ௞ୀ଴  =ሾܻଶሿܧ  (4) 
ଵே෍ ℑ൛R෡୶஑ౡൟଶ୒ିଵ௞ୀ଴  =ሾܻܺሿܧ  (5) 
ଵே෌ ℜ൛R෡୶஑ౡൟℑ൛R෡୶஑ౡൟ୒ିଵ௞ୀ଴  (6)  

The error introduced to expectation by cyclic 
frequency component ܴ௫∝, if it exists, is not significant 
in critical cases (low SNR), and converges to zero with 
large N. 

In order to find out if cyclic components exist in ෠ܴ௫ఈ, a hypothesis test is developed by following the 
guidelines presented in [10]. Hypotheses are ܪ଴: ∀ߙ ∈ 	→ ܣ ෠ܴ௫ఈ = εሺαሻ (7)  ܪଵ: ݂ݎ݋	݁݉݋ݏ	ߙ ∈ 	→ ܣ ෠ܴ௫ఈ = R୶஑ + εሺαሻ, (8)  
where set A contains all cyclic frequencies for a fixed 
value of τ, which are assumed to be known a priori. 
Under null hypothesis, test statistic T = ൫R෡୶஑൯൫Σ෠ଶୡ൯ିଵ൫R෡୶஑൯୘ (9)  

Is ߯ଶଶ-distributed and the following constant false 
alarm rate test for presence of cyclostationarity is 
derived: ܨఞమమሺTሻ = 1 − p (10)  ܨఞమమ is the cumulative distribution function of ߯ଶଶ-
distribution and p is the false alarm rate. The test can be 
modified to include multiple lag values [10] and/or 
cyclic frequencies [11]. An alternative approach to 
estimate the covariance matrix is presented in [10]. 

In the derivation of the algorithm, samples of the 
process x(t) are assumed to be well separated in time 
and thus approximately independent. In practice, 
however, presence of a narrowband interferer or 
spectral shaping of the noise (channel filtering) violate 
this assumption and may affect the detector 
performance. Aforementioned phenomena exist at 
some level in all practical radio receivers and needs to 
be acknowledged in the design of the detector.  

Often the information in the cyclic spectrum resides 
on low cyclic frequencies. Therefore, the high end of 
the cyclic spectrum is of no interest and the  

Autocorrelation product can be resampled at lower 
frequency. This is illustrated in Fig. 1, where a cyclic 
spectrum of an OFDM signal is simulated without 
decimation. In Fig. 2 the simulation is repeated and 
decimation by 8 is applied. 

Decimation increases the detection time by a factor 
corresponding the decimation ratio, and therefore 
improves the probability of detection. This is because a 
longer signal can be processed with a fixed-length FFT. 
Maximum decimation ratio depends on cyclic 
frequencies of the signal under detection, or can also be 
limited by detection time constraints either from the 
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the cyclic prefix is 12 samples ( ஼ܰ௉) and subcarrier 
modulation employed is 16-QAM. Due to the cyclic 
prefix, autocorrelation of the OFDM symbol stream is 
periodic with delay ߬ = 52 and the fundamental period 
is 64 samples ( ிܰி்+ ஼ܰ௉). Consequently, the signal 
has a cyclostationary feature at cyclic frequency ߙ = ௦݂/64.  

Fig. 9 shows simulated probability of detection as a 
function of SNR for different decimation ratios (M). 
Probability of false alarm is set to 0.05 and noise is 
additive white Gaussian (AWGN). The simulation 
shows that increasing the decimation ratio by a factor 
of two, which doubles the length of the processed 
signal, yields better detection performance, as the same 
probability of detection is then achieved at 
approximately 1.5 dB lower SNR. Furthermore, the 
signal is detected reliably (95% probability of 
detection) 10 dB below the noise floor with maximum 
decimation ratio M=16. 

 

 
Fig. 9. Simulated probability of detection as a function 

of SNR for multiple decimation ratios (M). 
 

Performance of the FPGA implementation was 
verified by measuring detection probability of the same 
OFDM signal that was used in the simulations. Anritsu 
MG3700a vector signal generator was used to modulate 
the baseband signal to WLAN channel 1 (2.412 GHz) 
and the signal was brought to test board’s antenna 
connector. Fig. 10 presents measured probability of 
detection as a function of input power to the antenna 
connector. With the highest decimation ratio, reliable 
detection is obtained with input power as low as -106 
dBm. This is approximately 5 dB below the thermal 
noise floor for 20 MHz bandwidth, which is P୬ = −174 + 10 logሺ20 ∗ 10଺ሻ ≈   (13)      .݉ܤ݀	101−

Fig. 11 compares the measured and simulated 
detection performances (M=16) by mapping the zero 
SNR point to the thermal noise floor. Moreover, it 
should be noted that the simulation assumed a noiseless 
receiver whereas measured noise figure (NF) of the 

receiver is 4.7 dB. The difference between simulated 
and measured probability of detection matches well 
with the receiver NF. This also shows why NF as small 
as possible is desirable in the receiver since it is 
directly translated into a decrease in the sensitivity of 
the spectrum sensor. 

 

 
Fig. 10. Measured probability of detection as a function 
of input power to the RF receiver. Measurement uses 
the same OFDM signal that was simulated in Fig. 6. 

 

 
Fig. 11. Comparison of simulated and measured 
detection probabilities (M=16). The difference is 5 dB 
of which 4.7 dB comes from the receiver noise figure 
(NF) which is not included in the simulation. 

 
Finally, detection of 802.11g WLAN signal from air 

was demonstrated. In this case, WLAN traffic was 
generated with a laptop, which was located in the same 
room with the detection equipment. 802.11g OFDM-
signal has FFT/IFFT period ( ிܶி்) of 3.2 s, which 
corresponds to 64 samples at 20 MHz sampling 
frequency. Therefore, primary signal’s cyclostationary 
feature is found by setting the lag parameter to 64. The 
signal exhibits cyclostationary with cycle frequency ߙ = ሺ ிܶி் + ஼ܶ௉ሻିଵ = 0.25 MHz, where ஼ܶ௉ = 0.8 µs is 
the length of the cyclic prefix. This can be observed 
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from the measured cyclic spectrum that is presented in 
Fig. 12. Detections in time are presented over 400 ms 
period in Fig. 13. Black lines correspond to time 
instances where WLAN signal was detected. In the 
measurement detection time resolution was set to 
0.82 ms. In between the primary signal transmissions, 
spectral opportunities in the order of tens of 
milliseconds can be observed in this example.  

 

 
Fig. 12. Cyclic spectrum of 802.11g WLAN signal 

measured over-the-air. 
 

 
Fig. 13. Detections of 802.11g WLAN signal from 

channel 6 (2.437 GHz) over 400 ms period. 
 
5.  CONCLUSION 

Implementation of a cyclostationary feature detector 
for spectrum sensing in cognitive radios was described. 
It was shown how decimation of the received signals 
autocorrelation product can be used to control the 
detection time in a fixed-size FFT implementation, 
thereby allowing flexible operation in an environment 
where multiple different primary systems might exist. 
Furthermore, feasibility of the design in respect of 
power consumption and silicon area was proved by 
synthesizing the design to a 65 nm CMOS process. 
Reference simulation results were provided and the 
measured detection performance of an ODFM signal 
was shown to match well with the simulations. The 
reference signal was detected with 95% probability 
when the received power was only -106 dBm (20 MHz 
bandwidth). Finally, detection of 802.11g WLAN 
signal was demonstrated through air interface. 
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