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ABSTRACT:

Cognitive radios utilize spectrum sensors to provide information about the surrounding radio environment. This
enables cognitive radios to communicate at the same frequency bands with existing (primary) radio systems, and
thereby improve the utilization of spectral resources. Furthermore, the spectrum sensor must be able to guarantee that
the cognitive radio devices do not interfere with the primary system transmissions. This paper describes a hardware
implementation of a spectrum sensor based on cyclostationary feature detector, which has an improved detection
performance achieved by decimation of the cyclic spectrum. Decimation also provides a simple way to control
detection time and, therefore, allows trading the detection time to better probability of detection and vice versa.
Implementation complexity in terms of power consumption and silicon area for a 65 nm CMOS process is evaluated.
Measured detection performance is presented and detection of a 802.11g WLAN signal through air interface is

demonstrated.
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1. INTRODUCTION

As wireless communications systems evolve,
demand for spectral resources is continuously growing.
However, traditional frequency allocation policy has
resulted in a situation where unallocated spectrum
bands are running short, while measurements have
shown that spectrum utilization in already allocated
bands is usually low.

Cognitive radios (CR) [1][2] promise a solution for
taking advantage of underutilized spectral resources
and have been a popular research topic for several
years. Cognitive radio’s capability to recognize the
surrounding radio environment and operate accordingly
(i.e. change operation frequency, modulation etc.)
permits operation among existing communication
systems without interfering the primary users. This
enables major increase in spectrum utilization.

To produce awareness of the surrounding radio
spectrum, cognitive radio device needs to incorporate a
spectrum sensing unit, which is able to sense spectral
opportunities reliably and at very low signal-to-noise
ratios (SNR). Furthermore, appearance of the primary
user must be detected in reasonable time to minimize
interference produced by the secondary network to the
primary system.

Spectrum sensing can be implemented for example
with energy detectors or feature detectors such as
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cyclostationary based detectors [3][4]. Energy detectors
are very simple to implement, but their performance
degrades when noise levels are unknown and they are
also incapable to differentiate between signals from
various systems [5]. Therefore, energy detectors are
best suited for fast and coarse spectrum scanning.
Feature detectors, in general, can operate reliably at
very low SNR levels and can also differentiate certain
signal types from others.

Much of the recent work is concentrated on
IEEE802.22 [6]-[8], which is the first standard based
on cognitive radio technology. It defines a radio
interface for Wireless Regional Access Network
(WRAN) that operates at the frequency bands currently
mainly occupied by digital TV broadcast services. In
IEEE802.22 networks, sensing task is somewhat
simplified due to two facts. Firstly, primary signals that
must be detected include only DTV broadcasts and Part
74 (wireless microphones etc.) transmissions and, thus,
purpose-built sensing algorithms can be used.
Secondly, locations of both base stations and customer
equipment are fixed, which relaxes implementation
constraints. Practical spectrums sensor implementations
for DTV bands have been presented in [9].

A more general approach is taken in this work. The
detection algorithm, presented in Section 2, is based on
cyclostationarity that the received signal inherits for
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example from modulation, cyclic prefixes or spreading
codes. Since the parameters are system dependent,
cyclostationarity can be used to identify the received
signal. Detectors based on cyclostationarity have been
presented in [10]-[12]. Effort is put especially on
identifying OFDM-based (orthogonal frequency
division multiplex) systems (e.g. WLAN, DVB-T,
LTE), which is likely to be used in many future
systems, but the concept is extendable to other signal
types as well [13].

In general, detector performance is characterized by
two metrics: probability of detection and false alarm
rate. They are both equally important, since low
probability of detection increases the amount of
interference inflicted on the primary users, whereas
high false alarm rate increases the amount of missed
spectral opportunities in the secondary network. Other
important parameters are the detection time resolution
and bandwidth, and, of course, power consumption and
area of the implementation.

This paper is organized as follows: Section 2
presents the cyclostationary feature detection algorithm
and shows how decimation can be utilized to control
the detection time, therefore resulting in fixed-length
FFT implementation. Section 3 describes both the
algorithm implementation and the hardware used to
implement the spectrum sensor prototype platform.
Section 4 then presents measured detector performance
(probability of detection) and compares it to ideal
performance from Matlab simulations. Moreover, over-
the-air sensing is demonstrated with 802.11g WLAN
signal. Finally, a conclusion is given in Section 5.

2. ALGORITHM DESCRIPTION

A process x(t) is second-order cyclostationary if its
mean and autocorrelation are periodic in time [14].
Thus, for a cyclostationary process, the cyclic
autocorrelation function (CAF) is nonzero for a set of
cyclic frequencies a # 0. Here, we concentrate on
signals that exhibit conjugate cyclostationarity such as
OFDM signals. The conjugate cyclic autocorrelation
function at cyclic frequency o can be estimated as
B 1\ _Jzman
R¢ = ;Z . x(n)x*(n—1)e” ¥ =R%¥+e(a) (1)

n=

in which g(a) is the estimation error. Here, t is lag
parameter in the autocorrelation. In practice, values of
the CAF are seldom exactly zero and decision has to be
made whether the value presents a zero or not.

If the cyclic autocorrelation does not exist, Ry = 0
and R¥ = e(a), which is asymptotically normal zero
mean complex random variable
R = e(@) = X(a) +jY (a) ()
X(a) and Y(a) are normal distributed zero mean
random variables. For vector of zero mean random
variables, an estimate of the covariance matrix can be
computed as
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where elements of the matrix are
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E[r?]= ﬁzk:o S{RE} (5)
ELXY]= 3,0, RRMIS(RY) (®)

The error introduced to expectation by cyclic
frequency component Ry, if it exists, is not significant
in critical cases (low SNR), and converges to zero with
large N.

In order to find out if cyclic components exist in
R%, a hypothesis test is developed by following the
guidelines presented in [10]. Hypotheses are
Hy: Ve€A - R¢=¢(a) (7)

Hy: forsomea € A — RZ=R¢+e(a), (8)
where set 4 contains all cyclic frequencies for a fixed
value of t, which are assumed to be known a priori.
Under null hypothesis, test statistic

T = (RY)(%:0) " (RY)’ ©)

Is y2-distributed and the following constant false
alarm rate test for presence of cyclostationarity is
derived:

FX%(T) =1-p (10)

Fz is the cumulative distribution function of y2-

distribution and p is the false alarm rate. The test can be
modified to include multiple lag values [10] and/or
cyclic frequencies [11]. An alternative approach to
estimate the covariance matrix is presented in [10].

In the derivation of the algorithm, samples of the
process x(t) are assumed to be well separated in time
and thus approximately independent. In practice,
however, presence of a narrowband interferer or
spectral shaping of the noise (channel filtering) violate
this assumption and may affect the detector
performance. Aforementioned phenomena exist at
some level in all practical radio receivers and needs to
be acknowledged in the design of the detector.

Often the information in the cyclic spectrum resides
on low cyclic frequencies. Therefore, the high end of
the cyclic spectrum is of no interest and the

Autocorrelation product can be resampled at lower
frequency. This is illustrated in Fig. 1, where a cyclic
spectrum of an OFDM signal is simulated without
decimation. In Fig. 2 the simulation is repeated and
decimation by 8 is applied.

Decimation increases the detection time by a factor
corresponding the decimation ratio, and therefore
improves the probability of detection. This is because a
longer signal can be processed with a fixed-length FFT.
Maximum decimation ratio depends on cyclic
frequencies of the signal under detection, or can also be
limited by detection time constraints either from the
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cognitive radio system or from the duration of the
transmission of the primary system signal.

8 10 12 14 16 18
Cyclic frequency (MHz)

Fig. 1. Example cyclic spectrum of an OFDM signal
sampled at 20MHz. Number of subcarriers is 52 and
length of cyclic prefix is 12.
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Fig. 2. Simulation in Fig. 1 is repeated, but
autocorrelation signal is now decimated by factor of 8.

3. IMPLEMENTATION

The cyclostationary feature detection algorithm was
implemented to calculate the test statistics (9), which
can be then compared to the pre-calculated threshold
(10) to make a decision if the primary signal is present
or not. Multiple choices exist for calculating the
multiplication with the exponential term followed by:

x(n) CONJ. AUTO- VARIABLE RATE 2048-FFT TEST STATISTICS:
CORRELATION DECIMATOR S
x(n)x (n-7) M=1,2,4,8 or 16 Z Lhi RaXZ ) Ra

Fig. 3. Cyclostationary feature detectors block dlagram.

The summation in (1). FFT was selected for the
calculation, as it gives not only the cyclic frequency bin
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of interest but the whole cyclic spectrum for a fixed lag
value. This provides insight to the operation of the
algorithm and also enables implementation of tests
based on multiple cyclic frequencies. In addition, the
FFT can be reused for implementing spectrum
estimation based energy detectors with small extra
hardware. A somewhat simpler implementation could
be, for example, to use a CORDIC [15] for a frequency
shift followed by an integrator for the summation,
which would have the downside of supporting a single
cyclic frequency only.

The selected implementation is shown in Fig.3.
First, complex input signal, sampled at 20 MHz, is
multiplied with delayed version of itself. The
autocorrelation requires a complex multiplier and a
dual-port random access memory (RAM) to implement
the lag, as shown in Fig. 4. Size of the memory is
determined by expected maximum lag value and
depends directly on the set of primary systems that one
wants to detect. For example, delay of 64 baseband
samples is enough for 802.11g WLAN signal, but it
could be as high as 8192 samples for example in DVB-
T systems.

M
T | Address Complex mult:
control .
4x real multipliers
— 2x adders

11

SEm—

x(n) | pual-port | X(n-T) V
RAM N

—

Fig. 4. Calculation of the autocorrelation using dual-
port RAM and a complex multiplier.
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Fig. 5. Implementation of the Varlable rate dec1mator.
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The autocorrelation product is then resampled using
variable rate decimator that is presented in Fig. 5. The
decimator consists of a CIC-stage [16] and three
decimate-by-2 stages that were implemented using FIR
filters. This combination supports decimation ratios
M=1,2,4,8 and 16. The CIC-stage was included to
allow future implementation of higher decimation
ratios with simple modifications to the control logic
and clocking circuitry.

Following the decimator is the FFT processor.
2048-point radix-2*> DIF FFT algorithm [17] was
selected because of its relatively low complexity, small
area and power consumption. It is a pipelined
architecture that is suitable for real-time high-speed
applications (Fig. 6). Normally this type of FFT
requires a reordering memory block, since the pipeline
output samples appear in bit-wise reversed order. In
this application reordering is not necessary, since the
test statistics can be calculated from the unordered set
of values as well.

Finally, the test statistics is calculated as presented
in (9). First, elements of the covariance matrix (4)-(6)
are calculated from the FFT output using three
multiply-and-accumulate blocks. FFT output samples at
the specified cyclic frequency, denoted by r = %(ﬁ‘j{‘)
andi = s(ﬁg), are stored in temporary registers.

Calculating the matrix inversion, (9) can be
rewritten as
_ r?E[v?]+i%E[X?]-2riE[XY]
T= E[X2]E[Y2]-E[XY]2 a1
which shows how the test statistics can be obtained
with 7 multiplications, 3 additions/subtractions and one
division.

The FFT dictates the detection time, i.e. the time
interval over which test statistic is calculated. The

detection time and can be expressed as
_ M*Nppr

Tg =— (12)
fsin

where f;;, is the input sampling frequency, M is the
decimation ratio and Nggr is the size of the FFT which
is fixed to 2048. By adjusting the decimation ratio
before the FFT, better detection performance is
obtained via increased detection time. For example, Ty
ranges from 102 us (M=1) to 1.6 ms (M=16) when
input is sampled at 20 MHz. In addition, using higher
decimation ratio also decreases power consumption,
since most of the logic is then sampled at lower clock
frequency and power consumption of CMOS logic is
approximately directly proportional to the sampling
frequency.

A block diagram of the spectrum sensor hardware is
presented in Fig. 7. It contains a commercial WLAN
RF receiver and a 10-bit 80-MSPS A/D converter for
signal reception. The core of the sensor is an FPGA
circuit, which implements digital baseband block for
channel filtering and DC cancellation, the presented
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detection algorithm, a central control unit, and a
NIOSII processor for handling the communications
with the outside world via USB. On the other end, a
laptop PC running Matlab is used to implement a user
interface. Fig. 8 shows a photo of the spectrum sensor
hardware.

Complexity of the detector implementation was
estimated by synthesizing the VHDL to a 65nm
CMOS process. The design was not optimized for an
ASIC implementation in any manner; especially the
memories in both autocorrelation and FFT were
implemented with power and area consuming standard
logic registers. Nevertheless, the worst-case power
consumption estimate at 20 MHz operating frequency
was 14.2 mW and silicon area approximately 1.0 mm®.
The figures show that the complexity is rather small
compared to a wideband front-end. Moreover, since the
memory blocks are the most power and area consuming
parts in the design, the figures are expected to go down
significantly when replaced with real memories.

PCB:

FPGA:
WLAN | Control >
RF Unit
CPUO
. (NIOSID) PC/Matlab
10-bit Digital Feature
ADC Baseband detector

Fig. 7. Spectrum sensor hardware.

e

Fig. 8. Measurement setup where the spectrum sensor
is connected to laptop via USB and user control
interface is running in Matlab.

4. SIMULATION/MEASUREMENT RESULTS
Detector performance was first evaluated with a
Matlab model of the detection algorithm. The model is
consistent with the FFT-based approach, presented in
Section 3, including the FFT and the decimation filters.
The model is tested with a signal that utilizes OFDM
modulation with 52 subcarriers (Nggr), the length of
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the cyclic prefix is 12 samples (Ngp) and subcarrier
modulation employed is 16-QAM. Due to the cyclic
prefix, autocorrelation of the OFDM symbol stream is
periodic with delay T = 52 and the fundamental period
is 64 samples (Ngppt+Ncp). Consequently, the signal
has a cyclostationary feature at cyclic frequency
a = f,/64.

Fig. 9 shows simulated probability of detection as a
function of SNR for different decimation ratios (M).
Probability of false alarm is set to 0.05 and noise is
additive white Gaussian (AWGN). The simulation
shows that increasing the decimation ratio by a factor
of two, which doubles the length of the processed
signal, yields better detection performance, as the same
probability of detection 1is then achieved at
approximately 1.5 dB lower SNR. Furthermore, the
signal is detected reliably (95% probability of
detection) 10 dB below the noise floor with maximum
decimation ratio M=16.

100 T
g 80 A """"
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9 :
S — M=
§ 60 e M=
5 —e— M=
—— M=
£ 40 —a— M=16|
o "
i .
2
[}
O 20F o Pt
0 N i i i L i
-20 15 -10 -5 0 5

SNR (dB)
Fig. 9. Simulated probability of detection as a function
of SNR for multiple decimation ratios (M).

Performance of the FPGA implementation was
verified by measuring detection probability of the same
OFDM signal that was used in the simulations. Anritsu
MG3700a vector signal generator was used to modulate
the baseband signal to WLAN channel 1 (2.412 GHz)
and the signal was brought to test board’s antenna
connector. Fig. 10 presents measured probability of
detection as a function of input power to the antenna
connector. With the highest decimation ratio, reliable
detection is obtained with input power as low as -106
dBm. This is approximately 5 dB below the thermal
noise floor for 20 MHz bandwidth, which is
P, = —174 4+ 1010og(20 * 10%) ~ —101 dBm.  (13)

Fig. 11 compares the measured and simulated
detection performances (M=16) by mapping the zero
SNR point to the thermal noise floor. Moreover, it
should be noted that the simulation assumed a noiseless
receiver whereas measured noise figure (NF) of the
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receiver is 4.7 dB. The difference between simulated
and measured probability of detection matches well
with the receiver NF. This also shows why NF as small
as possible is desirable in the receiver since it is
directly translated into a decrease in the sensitivity of
the spectrum sensor.

100

80

60

40

Probability of Detection (%)

20

0 i H i H H
-120 115 -110 -105 -100 95 -90
Input Power (dBm)

Fig. 10. Measured probability of detection as a function
of input power to the RF receiver. Measurement uses
the same OFDM signal that was simulated in Fig. 6.

100 I I P T
—— Measured - i
_ _ _Simulated ) NE-4.7dB 1
S 80 (NF=0) |....2......; G : ......
s : g1
'43 : : : : d!
...... e e do b g G s
g SO = : : i
(=] : : : : S
s : - - G
N z z N = 2
g‘ 40F - e by e gi """""
a : : S
« =3
S : : : é i
a 20f - T ooz T o
: : : : i
B 1
ol—i ; ; ; [
-120 -115 -110 -105 -10i

Input Power (dBm)
Fig. 11. Comparison of simulated and measured
detection probabilities (M=16). The difference is 5 dB
of which 4.7 dB comes from the receiver noise figure
(NF) which is not included in the simulation.

Finally, detection of 802.11g WLAN signal from air
was demonstrated. In this case, WLAN traffic was
generated with a laptop, which was located in the same
room with the detection equipment. 802.11g OFDM-
signal has FFT/IFFT period (Tgpr) of 3.2's, which
corresponds to 64 samples at 20 MHz sampling
frequency. Therefore, primary signal’s cyclostationary
feature is found by setting the lag parameter to 64. The
signal exhibits cyclostationary with cycle frequency
a = (Tppr + Tep) ™1 = 0.25 MHz, where T¢p = 0.8 us is
the length of the cyclic prefix. This can be observed
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from the measured cyclic spectrum that is presented in
Fig. 12. Detections in time are presented over 400 ms
period in Fig. 13. Black lines correspond to time
instances where WLAN signal was detected. In the
measurement detection time resolution was set to
0.82 ms. In between the primary signal transmissions,
spectral opportunities in the order of tens of
milliseconds can be observed in this example.

0.5

o
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M
N
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Cyclic frequency (MHz)
Fig. 12. Cyclic spectrum of 802.11g WLAN signal
measured over-the-air.

Channel #6
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time (ms)

Fig. 13. Detections of 802.11g WLAN signal from
channel 6 (2.437 GHz) over 400 ms period.

5. CONCLUSION

Implementation of a cyclostationary feature detector
for spectrum sensing in cognitive radios was described.
It was shown how decimation of the received signals
autocorrelation product can be used to control the
detection time in a fixed-size FFT implementation,
thereby allowing flexible operation in an environment
where multiple different primary systems might exist.
Furthermore, feasibility of the design in respect of
power consumption and silicon area was proved by
synthesizing the design to a 65 nm CMOS process.
Reference simulation results were provided and the
measured detection performance of an ODFM signal
was shown to match well with the simulations. The
reference signal was detected with 95% probability
when the received power was only -106 dBm (20 MHz
bandwidth). Finally, detection of 802.11g WLAN
signal was demonstrated through air interface.
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