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ABSTRACT: 

Todays, Pulse Doppler Radars are used in most of industries needed radar, but it is necessary to note that despite these 

radars have some benefits, they also face several problems including range and velocity ambiguity. Obtaining range 

and velocity because is base of use of pulse Doppler radars, therefore these radars should use new methods in their 

technologies to use them to eliminate range and velocity ambiguity. Using high pulse repetition frequency radars will 

create velocity ambiguity. Introducing the methods mentioned in this paper, we will seek to eliminate ambiguity in 

range. despite, there are many methods to eliminate ambiguity, we will engage to assess Particle Filter and Chinese 

Remainder model in this study and finally, we will explain method of using Vernier on the timing gates in the 

different distances. 
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1.  INTRODUCTION 

The main application of pulse Doppler radar to 

detect moving targets and find the range and speed as 

well. pulse Doppler radar are divided into three 

categories; Radar systems employ low, medium, and 

high PRF schemes. Low PRF waveforms can provide 

accurate, long, unambiguous range measurements, but 

exert severe Doppler ambiguities. Medium PRF 

waveforms must resolve both range and Doppler 

ambiguities; however, they provide adequate average 

transmitted power as compared to low PRFs. High PRF 

waveforms can provide superior average transmitted 

power and excellent clutter rejection capabilities.[1] 

Alternatively, high PRF waveforms are extremely 

ambiguous in range. When  radar systems transmitted 

by Low pulse repetition frequency to detect and get the 

exact range is convenient but since the Nyquist 

sampling rate when the repetition frequency is low, we 

do not observe it. Therefore, in determining the speed 

targets will be ambiguous.  

 There are different methods to unambiguty the 

pulse Doppler radar, which is used in similar ways, but 

the principles work in all manner of mathematical 

formulation of these methods is different. 

The present methods to range ambiguity resolving 

mainly are signal processing methods and data 

processing methods Data processing methods mainly 

are Chinese Remainder Theorem, permutation and 

combination method, multiple hypothesis tracking 

(MHT) and so on.[2]  

The Chinese Remainder Theorem is simple and of 

low computation complexity, but it requires at least 

three HPRFs and has the limitation that the numbers of 

range cells corresponding to HPRFs must be coprime; 

the permutation and combination method and MHT 

method are of high computation complexity; the hybrid 

filter and IMM methods perform well in range 

ambiguity resolving, but they do not consider the 

clutter. 

Particle filer based method for target tracking with 

the HPRF radar in clutter. The method makes full use 

of the particle filter (PF) that each particle represents a 

possible target state, updates target state with the 

ambiguous measurement directly, and thus avoids the 

problem that each possible measurement must be 

assigned a filter which may increase the computation 

complexity remarkably.[3]  

This paper proposed a Vernier frequency method 

for range unambiguty with the HPRF radar. The 
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proposed method makes full use of veriner frequency. 

Proposed method can solve range ambiguity and target 

tracking in dense clutter simultaneously. 

 

2.  CHINESE REMAINDER THEOREM 

In the method we assume K batches with different 

PRF is transmitted. The K PRFs create a set shown by 

R. 

In order to detect a target and consequently estimate 

its unambiguous range, the target must be detected at 

least in l batches from the K transmitted batches and 

the ambiguous ranges in the detected batches should be 

estimated correctly. All l dimensional subsets from the 

set R is denoted by 1,...,iR i L  , where L is the 

total number Of  l dimensional subsets from the set R 

and equal to: 

 
!

(1)
! !

k k
L

l l k l

 
  

 
 

The aim in signal design is to have a radar which 

can detect targets with ranges up to 
maxR  . The radar 

carrier frequency is 
cf  , and 

maxv  is the maximum 

target’s velocity. The minimum PRF of the radar is 

minPRF  and equal to: 

max max
min max

2 2
(2)cv f v

PRF fd
c 

  
    

The aim of the signal design is to have a radar that 

satisfies the limitation in (2) and has the ability to 

resolve ambiguity in the ranges up to 
maxR  using the 

closed form robust CRT. PRIs in several batches are 

written in the following form: 

1 2
( ) ; 1,..., (3)i s i

i

PRI Mr M i k
PRF c

    

Where sr  is the range cell intervals in meter, c is 

the speed of wave propagation in the free space, and 

iM  is the multiplier corresponding to the i th batch. 

All M is must not have the common divisor so that the 

only divisor of the several batches are 2 sMr

c

.[4] 

The following in equalities must be satisfied in 

order to have a HPRF radar with maximum target’s 

range equal to 
maxR : 

min

max

1
; 1,...,

; 1,..., (4)
i

i

s i

i

PRI i k
PRF

M r M R i k


 

   

 

So, the signal design is limited to finding at least K 

quantities for 
iM  , the common multiplier M, and an 

appropriate value for 
sr . The rs is related to the 

sampling rate in the base band. In radar applications 

where carrier frequency is large, the Doppler 

frequencies are large and consequently PRIs are small 

in HPRF radars. The more the sampling rate is, the 

more D of in choosing the M is are. On the other hand, 

power of the received echoes must be so large that the 

ambiguous range can be estimated preciously. The PRF 

selection problem is written in the following form: 

1

max

max

arg max

; 1,..., (5)
2

; 1,...,

2

i j

j

L

i
M j i

s
i

i

i s

s

s

M

f
subject to M i k

Mv

R
M i k

Mr

c
r

f



 



 

 






 

where sf  is the sampling rate in baseband. Problem 

(4) can be solved by using numerical methods. [5] 

Finding optimum quantities for sr  and iM , i=1, 

..., k, PRIs are obtained by (5). 

 

3.  PARTICLE FILTER METHOD 

3.1.  HPRF Radar Range Ambiguty 

Assume that maxR  is the maximum range of 

interest, and  , 1,2,...,r iF i L  is the set of HPRFs 

used for range ambiguity resolving. Without loss of 

generality, the i th HPRF  , 
,r iF  is taken to formulate 

the problem of HPRF radar range ambiguity. The 

maximum unambiguous range 
,u iR  corresponding 

to
,r iF is given by 

,

,

(6)
2

u i

r i

C
R

F
  

where C is the speed of light. As illustrated in Fig. 

1, let , ( 1,2,..., )i kr i L  denote the ambiguous 

range measurement at time k. Then, all possible ranges 

are generated by 

, , ,
( 1) , 1,2,..., ; 1,..., (7)

i k

j
u i i k i

r R j r i L j P     

with 

max

,

, 1,2,..., (8)i

u i

R
P floor i L

R

 
 
 
 

 

 Denoting the maximum unambiguous number. The 

function Floor(x) means to get the nearest integer less 
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than or equal to x. The value  {1,2,..., }ij P  is 

defined as the pulse interval number (PIN) 

corresponding to HPRF 
,r iF  such  that 

,i k

jr  reflects the 

true range of target at time k.  

 

 

Fig.1. All possible Ranges corresponding to an 

ambiguous range. 

 

Fig. 1 demonstrates that the true range of target 

must be one of ranges represented by (7), however, it is 

impossible to tell directly which one is true. Therefore, 

it is necessary to provide an integrated approach to the 

joint estimates of the target state and PIN [6]. 

 

3.2.  System setup  

In this section, the system model is formulated in 

polar coordinates and has ambiguity in the range 

measurements. It is assumed that a 2-D radar located at 

the origin of the coordinate system and responsible for 

detection of a single target with constant velocity. The 

dynamic model and measurement model are described 

as follows. 

 

3.3.  Dynamic Model  

The target state [ ]Tk k k kx r v PIN contains  

target  radial range kr , radial velocity kv and pulse 

interval number 
kPIN where [.]T represents the 

transpose of a matrix [.] . The state propagation from 

time k to  k+1 is given by 

1
(9)Kk k k k

x F x G v

 

with 

1 0

0 1 0 (10)

0 0 1

k

T

F

 
 


 
  

and 

2

0
2

0 (11)

0 1

k

T

F T

 
 
 

  
 
 
  

respectively denoting the transition matrix and the 

distribution matrix of process noise, where T is the 

sampling interval, and 
kv is a zero-mean white process 

noise with covariance 

1

2

0
(12)

0

q
Q

q

 
  
 

 

3.4.  Measurement Model 

The measurement set is given by  

is the number of  kn , where  
,1 ,{ ,..., }

kk k k nZ z z

measurements at time  k , and 

( ) [ ( ) ( )]Tapp Dz k r k f k contains the apparent 

radial range and Doppler measurement. The ambiguous 

measurement equation  

at time k is given by 

, ,
, 1,..., (13)

k m k k i k k
z H x W m n  

Where 

,1 0

(14)2
0 0

u i

k

R

H



 
 
 
  

is the measurement transitional matrix,   is radar 

wavelength, , 
,u iR  is given by (6) and  

kW  is zero-

mean white Gaussian noise process of known 

covariance 
kR  defined by 

2

2

0
(15)

0

r

k

d

R




 
  
  

 

where 
2

r  and 
2

Df are the range and Doppler 

measurement variance respectively. 

 

4.  VERNIER FREQUENCY METHOD 

4.1.  Using Vernier on the Timing gates 

The target range tracking systems operates based on 

range and then produce actual value of range for 

tracked objectives, which should be calculated to 

launch and control missile on the scope of target.[7] 

Moreover, the target range tracking system operates 

the processing automatically to receive information 

from external target and if it fails to operate and 

process this tracking, the automatic conduct of system 
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tracking is performed by using the range scan on the 

target. 

To perform tracking operation, the radar suggests 

three type of mode to us which include external target 

allocation mode, local conduct mode and automatic 

tracking by the target-returned signal mode. 

External target allocation mode and local conduct 

mode take priority over automatic tracking mode. The 

external radar-allocated target range data which stored 

in the computer of system and then placed into the 

integrator of tracking system is known the external 

target allocation mode.  

Until the target allocation and determination data 

don’t perform operation of conduct with acceptable 

accuracy, reformation on the target range determination 

system also will be performed by an operator. 

Reformation will be done by a manual rotation or hand 

wheel.[8]  

 Conduction must be done by observed image on 

the range- velocity monitor, when reformation is done 

by an operator. 

In case of accuracy of conduct on the target, the 

range tracking system should act in such a way that the 

target is settled between the Range Mark domain and 

on the screen. 

The local conduct mode engages to control the 

amount of range received from target allocation stage 

and performs operation of conduct of range by a 

handwheel which can transfer range domain. 

The range will be transferred regularly, until we 

change hand wheel. Amount of range is delivered to 

semi-automatic tracking range device that when this 

system integrates from range coordinate, sends it to 

automatic tracking range system. 

This amount of range is delivered to the tracking 

system to implement the local conduct mode and the 

speed of hand wheel rotation is main factor in the local 

conduct mode. Therefore, the measure of range 

variations on the screen corresponds with the speed of 

variation and the handwheel rotation which be entered 

to the tracking system. 

The range sensor that is called manual wheel or 

hand wheel, can perform the range fine or course 

reformation for tracking system.   

In tracking mode, the target range error signal 

effects on the range determination system, which 

controls  

and regulates the range- gate middle delay by ϕB, 

ϕH, Ʃ chanals. 

 

4.2.  Basic principles of using vernier 

In first of this section, we will examine the basic 

principles and process of using Vernier with an 

example and will verify finally our findings with a 

numerical example. 

In the Vernier method, the pulse repetition 

frequency is selected in such a way that has smaller 

pulse repetition periods compared with total time of 

signal emission and the target reception. Accordingly, 

determination of range domain of target will arise 

ambiguity in range. [9] 

The ambiguity in range creates several problems for 

the target automatic tracking to choose a range without 

ambiguity. Indeed, as soon as target moves, the pulses 

which returned by that are coincided and corresponded 

with those signals observed in the periods 

corresponding to the ambiguous range and gated 

pulses. 

During emission, the receiver will be out of reach in 

order to prevent the returned signal. 

The signals reflected from target do not receive at 

this time and the target tracking systems can't act 

properly. In radar, advisable activities have been 

predicted to prevent this problem that its explanation 

exceeds the topic of this section. To determine the 

amount of correct target range, the Vernier frequencies 

method is implemented in radar. General principles of 

this method will be explained as follows. 

In this method, the pulses sent by radar, act 

periodically on two repetition frequencies. First is main 

frequencies and another is selected among group is 

corresponded with modes that is multiples of main 

frequency for having correct number of periodicity in 

Tunique period.  

1 1 2 2 (16)uniqueT n PRI n PRI   

 

Tunique is collective period in which the ambiguity in 

range will not to be existed. 

In principles of tracking Vernier, we also will 

evaluate the average and course size Vernier method. 

We will explain that the number of 
1n  and 

2n  periods, 

it is better to differ in unit size with each other in the 

large size Vernier method that this causes to create the 

maximum amount of Tunique. This matter will be 

verified by using of transactions as follows. 

In this case, when the returned signals caused by 

main frequency are received with t1 delay, the pulses 

caused through range gate are settled on the target-

returned signals with t1 delay and will be corresponded 

with returned signal too. 

To explain the Vernier frequencies method which is 

to divide degrees by part, the timing diagram of emitted 

pulses, the target-returned signals and gates of tracking 

will be examined and n values will be selected to 

enhance understanding of this topic. 

Figure 2 will describe this point by (n1=5, n2=4) 

values. 

The a and b Figure 2 displays the received packets 

of pulses with repetition courses deals 
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1 2 1 2
1 2 1 2

1 1, ( , ) (17)u uT T
T T T T

f f n n
     

In this figure, part c and part d will engage to 

represent the target-returned signals packages with t1 

delay in comparison to emitted pulses for both 

repetition frequencies. 

Similarly, part e and part f engage to the range gate 

packages which is settled on the target-returned signals 

with t1 delay in comparison to the emitted pulses and 

these parts lead to gate the signals returned by target. 

Also, h and g diagrams of this figure focus on 

packages of the same range gates with t1+T1 delay, that 

is, they advance the returned range gate of the T1 size 

and is placed exactly on the gated signal. Then, the gate 

order will be shifted of the T1 size, which caused by 

second signal, that is mean, gating of both is done from 

same point and they are overlapped in the especial 

multiple; that point will be the unambiguity range of 

our target. 

Hence, it can be inferred that we should fix error 

and difference rate between the target-returned signals 

through delaying the range gate. 

If one error resulted from deviation between the 

actual range of target and the range is gained by gating, 

take places during a frequency period, transferring to 

other frequencies will cause to mismatch between gates 

and the target-returned signals the Δ dimension [10] 

Δ is the time difference between the range gates 

adjusted in the repetition period of T1 and the target-

returned signals in the repetition period of T2. 

1 2

2 1 1 2 1 2

(18)
* *

u u u u uT T nT n T T

n n n n n n


      

That is, in equation (18) in   direct dependency with 

the uT  as well. 

In cases where the error is the size of K period 1T , 

relation (19) will be established. 

1 2

* (19)uT
K

n n
 


 

Therefore, determination of unambiguous range of 

target will be done when Δ= 0. In this case, two 

returned signals will be overlapped in one space and 

that point will be position of unambiguous range. 

To increase the sensitivity of the Vernier 

frequencies method and the mobility of the target 

marks on the different repetition frequencies, in 

addition to large scale, an important scale also is 

employed by using major and minor frequency to make 

a difference between n values of more than unity size 

which is equal to a greater integer and (n1-n3)= N.  

In this case, the existence of an error in the single 

range determination will enable us to decrease the 

greatest amount of unambiguous range of the N size.  

So, other measures are used to determine total of 

uniform range.[11] 

To facilitate the process, the measure which is 

corresponded to the middle single range (T'0) is 

considered as average measure and the measure is used 

as the course measure which employed to determine all 

of uniform ranges.  

We have to establish the following conditions, if we 

tend to use the Vernier frequencies method: 

0, , (20)
2

o o

o

T T m
m N

T T

 
   

Where T'0 is period of new unambiguous range and 

T0 indicates total unambiguous range and N is also an 

integer. 

In this equation, m indicates the tenth decimal 

which obtained after dividing and equals m< 1. 

In the total of covered domain, if amount of 

unambiguous range be greater than amount of the 

average single range in the 
1

m
 quantity, then the 

adopted frequency period will be satisfaction based on 

the following conditions: 

Interval of new unambiguous range T'0 should 

include integer (N) of T periods and the remaining 

period must be equal 
2

m
. 

 

 
Fig. 2. Representation of the Vernier diagram on the 

target signal 
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To descript and explain this, we will evaluate figure 

2: 

In figure 2, to illuminate the subject, we suggest 

that amount of unambiguous range is greater than the 

new unambiguous range three times (0, m= 0.33) which 

has been determined based on average measure. 

In this condition, T'0 internal includes a numerical 

value of the adopted frequency periods and the 

remaining time of that period is (0, m/2= 0.16= Δ). 

By this diagram, it can be concluded that the 

mismatch between gate and the returned signal is great 

and a great error will be happened in determination of 

range based on average measure. 

If an error is happened in a distance, then the 

mismatch between gate and signal is 0.16 of period                

(m/2= 0.16) or (0.16* T) and maximum error will be 

(3×0.16≈0.5) due to repetition of three of 0T   intervals 

in T0 interval. 

Accordingly, similar to fine and average Vernier 

methods it is necessary to create a mismatch (Δ=0) to 

determine the general unambiguous range. In this case, 

the requested gate delay is regulated in the stairs of 

multiples of the main frequency period. 

The process of the target unambiguous range 

determination is operated in the controlled chanal and it 

can be used for modes of conduct of systems and the 

target tracking. 

In the Vernier method, we will study based on the 

average and coarse measures. In the coarse measure, 

the difference between n values equals one but in the 

average measure, this difference is two [12].  

When the difference between n values is more than 

unit, the unambiguous range is decreased according the 

difference of n values and the error rate will be greater. 

We apply the average method to increase accuracy 

in the operation of decline in the error of gate and the 

returned signal. 

Here, we will examine the Vernier method for small 

periods because this method should be analyzed in the 

system tracking discussion and in this section, we will 

represent only one example of how the system operates 

[13]. 

As mentioned in the previous section, we will have 

two periods as follows: 

1

2

1 1 2 2

1 2

1

1

2

2

10

12

(21)

6, 5

6

5

(6)(10) (5)(12) 60

unique

u u

u u

unique

T

T

T n PRI n PRI

n n

T T
T

n

T T
T

n

T





 

 

 

 

  

 

Since the difference between n1 and n2 is of the 

unity size, so we have used the course Vernier which 

will have the greatest unambiguous range in 60. 

Equation (22) will show that if we have one error 

period, the difference between the range gates regulated 

on the target in the repetition period T1 and the target-

returned signals in the repetition period T2 will be 2. 

1 2

2 1 1 2 1 2* *

60 60 6(60) 5(60) 60
2 (22)

5 6 (5)(6) 30

u u u u uT T n T n T T

n n n n n n


    


     

  

 

But if we have the error in the several periods, the 

difference between the range gates regulated in the 

repetition period T1 and the target-returned signals in 

the repetition period T2 will be equation (23): 

1 2

60
* * 2 (23)

* 30

uT
K K k k

n n
          

 

 

We will use one example to finely illustrate this 

matter. 

According to figure (2), we send two minor and 

major pulses and receive the signals returned by part a 

in the part c and the pulses returned by part b in the part 

d. 

In this case, the returned signals are received with t1 

delay, which resulted from the minor and major 

frequencies, therefore the pulses that created by the 

range gate with t1 delay will be settled on the target-

returned signals and corresponded to the returned 

signals[14]. 

This will be happened in the part e and part f. In the 

part g and part h, we engage to the pulse delay of the 

range gate of the t1+T1 size, when the difference 

between n values is equal unit because when we shift 

the pulse e of the T1 size, that is means we shift the 

range gate of the T1 size and this range gate is settled 
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exactly on the signal. Then, we advance the gate order 

that resulted from second signal of the T1 size and this 

means that the gating of both is done from same point 

and they are overlapped on the especial and common 

multiple and this point will be our unambiguous range 

of target. 

This means that we must fix the error which 

resulted from mismatch of the target signal in the T1 

frequency period with the range gate caused from the 

T2 frequency period. 
1

2

10 0 10 20 30 40 50 70 80 90 100 110 120 140 150

12 0 12 24 36 48 72 84 96 108 120 130 ...

10 22 34 46 58 70 82 94 106 118 ...

12 10 2 1

60 130

60

130

first period

for T

for T

K first period





        

Figure 3 error in a period between gate and signal 

As seen in the figure (3), when the range cells are 

received in the screen in the receiver of tracker, which 

resulted from the T1 and T2 as above, in the cell of first 

period, the error rate is equal 2 in the first period, 

therefore because they differ from each other in a 

period, if the range gate resulted from T2 is shifted of 

the T1 size, in this case, both will begin to gate from 

one point and will overlap in one especial multiple. 

Here, we observe that both of target will overlap in the 

cell of 70. So, the unambiguous range will be obtained. 

 

5 CONCLUSION 

In this study, we tried to provide different methods 

to eliminate ambiguity in range for the high pulse 

repetition frequency radars. Although, there are 

enormous variety of these methods, each of these have 

their advantages and disadvantages and will effect on 

the accuracy of measurement. But our proposed method 

which is the Vernier method has enabled to improve 

accuracy using the error enlargement in the different 

states as well as to eliminate correctly the ambiguity in 

range. 
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