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ABSTRACT: 

Today, reduction of losses and operational costs is considered an important issue in power systems. Demand response 

program causes diminished consumption during peak hours and thus increased reliability and reduced costs. 

Reconfiguration of distribution networks are among the practical methods in reducing losses and costs as well as 

improving the voltage profile. In this paper, the reconfiguration of distribution networks is performed considering 

demand response potential and in the presence of distribution generated (DG) sources using a new optimization 

algorithm called mine blast optimization algorithm (MBA). For this purpose, reducing losses, improving voltage profile, 

and lowering operational costs of the network are also taken into account as objective function. The proposed method 

is applied on 33-bus radial network. Simulation has been performed using MATLAB software. 
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1.  INTRODUCTION 

Losses are always present in power systems, whose 

major part is related to distribution network. Various 

methods have been adopted to mitigate the losses and 

naturally the operational costs in networks including 

capacitor placement, installing distribution generation 

(DG) sources, consumption management, replacing the 

network conductors and network reconfiguration. 

Among them, reconfiguration is the simplest and least 

expensive method to mitigate the losses. 

Reconfiguration of distribution networks refers to 

opening a number of keys and closing the same number 

of keys, such that while keeping the radial structure and 

constraints of the system, the losses are also minimized 

[1]. Although reduction of losses is considered the key 

objective in reconfiguration of distribution networks, the 

issue of reconfiguration is also employed for other 

purposes including improving voltage profile, 

enhancing voltage stability, improving reliability, 

equalizing the demand of feeders, reducing operational 

costs, and the like [2].  

One of the effective methods for reducing costs is 

usage of demand response program. Demand response 

refers to the ability of final users to improve the 

consumption pattern of electric energy to achieve 

suitable prices and improve the reliability of the network 

[3]. Generally, demand response aims to reduce 

electricity consumption during critical hours. The 

critical hours are when the price of wholesale market is 

very high or the system storage level is low due to 

incidence of unexpected events. Indeed, demand 

response is alteration of behavior in consuming energy 

on the part of demands [2]. The progressive growth of 

electricity consumption in recent years has changed 

usage of demand response sources into a vital issue for 

system operators. In general, the demand response can 

alter the form of electric energy consumption through 

demand management in the system such that the system 

peak declines and the consumptions transferred to non-

peak hours. Accordingly, implementing the demand 

response program brings about various economic 

advantages and reliability. 

There are many researches on distribution network 

reconfiguration with a variety of methods. In [4] 

optimization objective and constraints of the distribution 

network reconfiguration and overviews a variety of 

algorithms, including the heuristic, stochastic 

optimization and intelligent methods is presented.  

Using of hybrid heuristic genetic algorithm [5], 

combination of cycle-break algorithm and genetic 

algorithms [6] or genetic algorithm [7] are a method for 

reconfiguration of distributed system. Moreover, using 

of multi-agent particle swarm algorithm [8], modified 

particle swarm algorithm (MPSO) [9], multi-objective 
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discrete particles swarm algorithm with graph theory 

[10] and two group PSO [11] are another optimization 

method for reconfiguration. In [12] a distributed system 

with renewable energies and particle swarm 

optimization (PSO) algorithm is presented. a multi 

objective method for optimal network reconfiguration as 

well as reactive power dispatches of DGs is proposed in 

[13] to improve the network performances by using non-

dominated sorting PSO. 

A rule-based expert system with a colored Petri net 

(CPN) algorithm is developed in [14] for load balancing 

of distribution systems. In [15] a dynamic 

reconfiguration considering the load variation was 

proposed. A minimum spanning tree (MST) based on 

Kruskal’s algorithm has been applied to find the optimal 

reconfiguration under multi times, with minimizing the 

total power loss as objective function. A new 

reconfiguration heuristic to reduce the total power loss 

and the maximum current of electrical radial networks 

based on the branch-and-bound strategy is presented in 

[16]. Using of evolutionary algorithms is another 

method for reconfiguration of network, such as [17] and 

[18] that latter reconfigured switch and tap-changer. Ref. 

[19] proposes the study and application of an algorithm 

based on Ant Colony Optimization, method covered in 

the paradigm of Swarm Intelligence, sub-discipline of 

Computational Intelligence.  

The work presented in [20] is a step forward to define 

the reconfiguration problem closer to reality by 

considering the effect of harmonic loads. To solve this 

complicated combinatorial, non-differentiable 

constrained optimization problem, novel heuristic 

optimization techniques such as Shuffled Frog Leaping 

Algorithm (SFLA) and Imperialist Competitive 

Algorithm (ICA) are employed. 

In this paper, reconfiguration of distributed network 

with DGs and considering of demand response program 

is proposed using MBA. The rest of this paper is 

organized as follows: problem modeling includes 

objective function, constraint introduction and load 

modeling is presented in section 2, backward/forward 

sweep power flow is illustrated in section 3, 

investigation of mine blast optimization algorithm is 

presented in section 4 and section 5 and section 6 are 

dedicated to simulation and paper conclusion, 

respectively. 

 

2.  PROBLEM MODELING 

2.1.  Objective Function 

Every optimization problem has a mathematical 

function called objective function or cost function. The 

objective function of this problem includes reduction of 

losses and operational costs of the network. 

 

2.1.1. The losses of the distribution network 

Transmission of power through lines is always 

coupled with losses. The losses of the total power of the 

network in an hour are expressed as follows: 
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Where, 𝑃𝐿𝑜𝑠𝑠
𝑡  is the ohmic losses of the network in 

the tth hour, Ri represents the Ohmic resistance of the ith 

line, |𝐼𝑖
𝑡|2 is the squared size of the current of ith line at 

the tth hour, and Nbranch denotes the number of lines. 

 

2.1.2. Operational costs 

One of the main objectives of the problem is to 

obtain the optimal radial structure to minimize 

operational costs of the network. The function associated 

with the network operational costs can be stated as 

follows: 

 

1

( )
T

t t

grid grid

t

Cost P 


                                                   (2) 

 

Where, 𝑃𝑔𝑟𝑖𝑑
𝑡  is the power received from the network 

and 𝜆𝑔𝑟𝑖𝑑
𝑡  represents the price of electricity purchased 

from the network at the tth hour. 

 

2.2.  The Problem Constraints 

Constraints are limitations considered in the 

problem, and are associated with the natural structure of 

the network. 

 

2.2.1. Limitation of the voltage of buses 

The allowable range of voltage changes in the 

network is limited, and standards usually consider slight 

changes around the nominal value as allowable. 

Accordingly, the voltage of buses should always lie 

within an allowable range: 

 
min max

i i iv v v            i=1, 2, …, Nbus                     (3) 

 

Where, vi is the voltage of ith buss, vi
min and vi

max 

represent the minimum and maximum allowable voltage 

in the ith bus, with Nbus representing the number of buses. 

 

2.2.2. Limitation of the current of lines 

The lines have a limited ability to pass the current, 

and passage of a current over this value can seriously 

damage the conductor. In order to prevent overload on 

the lines, the current of each branch should be lower than 

or equal to its maximum capacity. 

 
max

i iI I           i=1, 2, …, NLine                             (4) 
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Where, |𝐼𝑖| is the current of the ith line, |𝐼𝑖
𝑚𝑎𝑥| 

represents the maximum allowable current in the ith line 

and NLine denotes the number of lines. 

 

2.2.3. The constraint of network radiality and feeding 

of all demands 

The most difficult limitation for the network 

reconfiguration problem is the network’s radiality 

limitation. Unlike other limitations, it is not possible to 

state this limitation as a mathematical equation and 

analytically. In this paper, using graph theory, isolated 

buses and loops were detected, after which if it is radial, 

the objective function corresponding to that solution is 

calculated. If the generated configuration is not radial, 

then a large number is considered as its corresponding 

objective function, so that this solution would be 

considered a bad solution, and accordingly will be 

regarded as low priority for selection. In this method, a 

matrix is defined whose rows are equal to the number of 

buses, while its columns are equal to the number of lines. 

Thereafter, in each row, if the bus corresponding to that 

row is connected to the lines corresponding to those 

columns, the columns become equal to 1, while the other 

members of that row will be zero. Following matrix 

development, in each row, the columns that were equal 

to 1 are counted and the obtained number is considered 

the order of that row. Thereafter, we remove any row 

whose order is one, while also eliminating the column in 

which the row is equal to one. The stages of row and 

column removal continue until reaching a null matrix, 

suggesting that the network is radial, otherwise it will be 

non-radial. 

 

2.2.4. The constraint related to the demand response 

this constraint is stated by the following relation: 

 

min max

t t tDR DR DR                                                 (5) 

 

Where, 𝐷𝑅𝑚𝑎𝑥
𝑡  and 𝐷𝑅𝑚𝑖𝑛

𝑡  are the maximum and 

minimum values of demand reduction at the time of t. 

 

2.3.  Load Modeling 

In studies of power systems, three models including 

constant power, constant current, and constant 

impedance have been proposed for modeling. In this 

paper, the constant power model is considered to model 

the demand behavior. 

 

2.4.  The Model of Buses with Distributed 

Generation 

In the presence of distributed generation (DG) 

sources in distribution networks, this network loses its 

radial state and will convert to feed from several points 

or continuously. The DG units which are controlled as 

PQ buses are introduced into the model as negative load: 

DG

DG

P P

Q Q

 


 
                                                                  (6) 

 

3.  BACKWARD/FORWARD POWER FLOW 

The typical methods of power flow used in 

transmission networks are different from those of 

distribution networks. This is because distribution 

networks have a radial structure and high R/X ratio. 

Furthermore, by enhancing the diffusion coefficient of 

DG sources, the distribution network turns from a 

passive network to an active one. In this paper, 

backward/forward sweep power flow based on current 

summation has been used in a distribution network. 

Simple structure and fast convergence are two important 

advantages of this method. 

 

3.1.  Backward Sweep 

in the first iteration, the voltage of all buses is 

considered equal to the voltage of source. Considering 

the known value of voltage of buses, the current of loads 

can be calculated as follows: 
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i
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Where, 𝐼Li, Pi, Qi, and Vi represent the current, active 

power, reactive power, and voltage of ith load, 

respectively. 

After calculating the current of loads, the current 

passing through the lines should be calculated by starting 

from the farthest line in relation to the reference bus. For 

example, for the jth line we have: 

 

j iL L

j D

I I


           i=1, 2, …, N                              (8) 

 

Where, N denotes the number of system buses, ILj 

Shows the current passing through the jth line, and D is 

the set of lines connected to the ith bus. Accordingly, the 

backward sweep is terminated, and the current of all 

lines is calculated or updated. 

 

3.2.  Forward Sweep 

in forward sweep, by starting from the reference bus 

(whose voltage is known), and considering the 

impedance and current passing through each line, the 

voltage of the ith bus is calculated as (9): 

 

1 ii i i LV V Z I           i=1, 2, …, N                        (9) 

 

Where, Vi is the voltage of the ith node, Vi-1 shows the 

voltage of the initial node of ith line, Zi represents the 

impedance of the ith line, and 𝐼𝐿𝑖  Indicates the current 
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passing through the ith line. As this process is completed, 

the forward sweep is terminated, and the voltage of all 

buses will be updated. 

 

3.3.  Investigating the Convergence Criterion 

after performing the backward/forward sweep, the 

convergence criterion should be calculated to check 

whether further iterations are required or not. 

 

max , ,max i old i newV V V                               (10) 

 

Where, 𝑉𝑖𝑜𝑙𝑑 is the voltage of the ith bus calculated in 

the previous iteration, 𝑉𝑖𝑛𝑒𝑤  Shows the voltage of ith 

node calculated in the current iteration, with 𝜀 

representing the extent of allowable deviation of the 

voltage. If (10) holds true, flow of current is terminated. 

Otherwise, the procedure of iteration of calculations 

should continue. 

 

4.  MINE BLAST ALGORITHM (MBA) 

Reconfiguration of distribution networks is a 

nonlinear hybrid optimization problem with wide 

dimensions including a number of constraints. 

Considering the large number of keys in distribution 

networks, there are various states in opening and closing 

the keys in the network, further complicating the 

problem. To solve such a problem, robust and efficient 

optimization methods are required.  

Today, optimization algorithms are easily used in 

different problems including linear, continuous, or 

discrete problems. The optimization algorithms 

including MBA suitably optimized the reconfiguration 

problems. 

 

4.1.  Fundamental Concepts 

The main idea of this algorithm is based on blast of 

a mine, in which the collision of shrapnel shell resulting 

from the blast with the adjacent mines causes their 

exclusion. To better understand the situation, consider a 

mine field, and assume that we want to clear all of its 

mines. Thus, our objective is to find the mines and also 

determine the mines that have them maximum potential 

of blasting. In this view, it is in the optimal point of X*, 

and can incur the maximum level of damage 

(minimization or maximization of f(x) per any X*). 

The huge extent of damage resulting from each 

shrapnel shell in a region can represent presence of other 

mines, which may have greater or lower explosive 

power. Every shrapnel shell has a specific direction and 

distance, and can cause explosion of mines by colliding 

with them. The extent of damage resulting from 

explosion of each bomb is considered the eligibility level 

of the objective function in the location of that mine. 

 

4.2.  The Presented Method 

the presented MBA method is initiated with a set of 

initial points, which are the first struck points. These 

initial points are represented by 𝑋0
𝑓
, with f=1,2,3,…, 

Which can be determined by the user. Nevertheless, the 

presented algorithm can select the locations of the initial 

points randomly and using the upper and lower limit 

values of the problem of interest. This algorithm needs a 

primary population consisting of independent agents, 

which is developed through an initial blast and thoughts 

generation of a number of independent agents (shrapnel 

shells). The number of these agents in the initial 

population (Npop) is considered as the number of 

shrapnel shells (Ns). This algorithm employs the values 

of upper and lower limits which are determined based on 

the problem of interest. It then generates the strike point 

using a small random value as follows: 

 

0 ( )X LB rand UB LB                                       (11) 

 

Where, X0, LB, and UB represent the generated initial 

points, lower limit, and upper limit of the problem, 

respectively. rand is a uniform random number between 

0 and 1. Although across all of the optimization 

simulations implemented in this study, an initial strike 

point will be very effective and efficient, more initial 

points can also be utilized, causing increased dimensions 

of the primary population and thus elevated number of 

objective function assessments (computational cost). 

Assume that X is the current location of a mine, which is 

expressed as follows: 

 

( )mX X           m=1, 2, 3, …, Nd                                   (12) 

 

In this relation, Nd shows the dimensions of the 

search space and is equal to the number of independent 

variables. Assume that Ns shrapnel shells have been 

produced in response to mine blast, which also causes 

blast of another mine in the location of Xn+1: 
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Where, 𝑋𝑒(𝑛+1)
𝑓

, 𝑑𝑛+1
𝑓

, and 𝑚𝑛+1
𝑓

 represent the 

location of the mine blasted in response to strike of 

shrapnel shell, the distance, and direction (slope) of the 

shrapnel shells shot in each iteration, respectively. The 

location of the blasted mine 𝑋𝑒(𝑛+1)
𝑓

 is defined as 

follows: 
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( 1) cos( )
f f

e n nX d rand              n=0, 1, 2, …       (14) 

 

Where rand shows a random number with uniform 

distribution and 𝜃 indicates the angle of shrapnel shells, 

which is equal to a constant value, calculated by 

θ=360/Ns. Equation (14) has been written regarding 

simulation of mine blast in the real world. The shrapnel 

shells (independent agents) which have variable 

distances in relation to the blast point and specific 

directions explored the search space in each iteration as 

360° and based on certain values of θ and 𝑑𝑛
𝑓
 to find the 

best optimal point. The θ value is set at 360/Ns so that a 

uniform search is performed throughout the entire 

solution space. This prevents accumulation of 

independent agents in a certain region of the search 

space. 

The exponential term in (13) is employed to improve 

the obtained blast point, through being affected by the 

information associated with the previous solutions (𝑋𝑛
𝑓
). 

The distance 𝑑𝑛+1
𝑓

 and direction of 𝑚𝑛+1
𝑓

 are defined as 

follows: 
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Where, F is the value of objective function per X. To 

calculate the initial distance for the shrapnel shell, the 

relation d0= (UB – LB) is used in each of the dimensions. 

The initial distance calculated by the algorithm is 

employed to search for the best solution within the range 

of LB < d0 < UB, which is calculated by multiplying the 

initial distance by a random number (such as rand 

function in MATLAB software). 

In addition, to conduct the exploration operation 

related to the space of interest within smaller or larger 

distances, exploration factor (μ) is also defined. This 

constant factor, which is used in the initial iterations of 

the algorithm, is compared with the index of number of 

iterations (k). If it is larger than k, then the exploration 

process begins. The relations associated with exploring 

the search space are as follows: 

 
2

1 ( )f f

n nd d randn              n=0, 1, 2, ...             (17)  

( 1) 1 cos( )f f

e n nX d             n=0, 1, 2, ...             (18) 

 

rand is also a pseudorandom number with normal 

distribution. During the exploration process, if the 

constraint related to μ is followed upon, the distance of 

each shrapnel shell is also modified using (17). Usage of 

square of a random number with normal distribution can 

allow for searching within smaller or larger distances in 

addition to better implementing the exploration process 

in initial iterations. Larger value for the exploration 

factor (μ) allows for exploring more remote areas (better 

exploration). Therefore, μ value determines the intensity 

of exploration. To enhance the capability of exploration 

and global search in the presented method, the initial 

distance of shrapnel shells is also diminished gradually. 

In this way, the mines are able to find the probable 

location of the global optimal point. Reduction of 𝑑0
𝑓
 

value is performed as follows: 

 

1

exp( / )

f
f n
n

d
d

k 
           n=0, 1, 2, ...                       (19) 

 

In this relation, α and k are the constant degradation 

factor and number of iteration. Selection of α, which is 

determined by the user, depends on the extent of 

optimization problem complexity. The effect of α in 

reducing the distance of each shrapnel shell is adaptive 

and is done (19). Therefore, the entire lower limit to 

upper limit range of the problem of interest will be 

searched and explored. 

 

4.3.  Adjusting the User Related Components 

improper selection of values of the algorithm 

components can result in low convergence rate, 

convergence to a local optimal solution, or achieving 

undesirable solutions. 

- In simple or relatively complex optimization 

problems, selection of 10-15 shrapnel shells per each 

mine can be effective and practical. In more complex 

problems, however, larger number of shrapnel shells 

(Ns) is suggested, so that more blasts occur for better 

searching the solution space.  

- The exploration factor (μ) is highly dependent on 

the extent of problem complexity, number of 

independent variables, constraints, and the search range 

(the distance between upper and lower limits). 

Typically, for problems with less than four variables and 

relatively complex functions, μ value is considered zero. 

Elevation of μ value can cause increased probability of 

entrapment in local optimal points. 

- The degradation factor (α) is also dependent on the 

extent of complexity of problem, number of decision-

making variables, and search range. When the search 

range (UB and LB) is wide, larger α values should be 

considered for better exploration. High values for α 

increase the probability of finding global optimal points, 

though it causes elongated computational time required. 

 

4.4.  Convergence Criterion 

as with many meta-exploration algorithms, the best 
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solution is calculated when termination conditions are in 

place. These conditions can be considered the number of 

iterations, working time of CPU or ε (which is a small 

value, and is defined as the allowable error between the 

two last solutions). The MBA will continue running until 

the above-mentioned termination criteria are not 

fulfilled any longer. 

 

5.  SIMULATION RESULTS 

To indicate the efficiency of the proposed method, 

the reconfiguration problem is solved using MBA with 

the aim of decreasing losses and minimizing operational 

costs of the network, and considering the demand 

response. Simulation is performed in MATLAB for 

three different scenarios on a standard 33-bus radial 

distribution network, as shown in Fig. 1. The formation 

related to this network is also presented in [24]. 

The 33-bus distribution system has 37 branches, 

including 32 sectionalizers and 5 tie switches, with the 

latter shown with dotted line in Fig. 1. The sum of active 

and reactive loads installed is 3715 and 2300 kW, with 

the nominal voltage of the system being equal to 12.66 

kV. The open switches of the system before 

reconfiguration are 33, 34, 35, 36, and 37, and the active 

losses are equal to 202.6 kW. 

The price of energy for 24 hours a day in terms of 

$/MWh and hour load value per p.u. are indicated in 

Table 1. Furthermore, two response loads exist in bus 15 

and 27, whose specifications are provided in Table 2. 

Solving the reconfiguration problem by MBA is 

performed across three different scenarios: not 

considering the demand response with the aim of 

decreasing network losses, not considering the demand 

response with the aim of reducing operational costs, and 

considering the demand response with the aim of 

reducing losses during 24 hours a day. 

 

 
Fig. 1. The 33-bus network. 

Table 1. The hour load in terms of p.u. and price of 

energy for 24 hours a day [22] 
Hour Energy 

price 

($/MWh) 

Load 

(p.u.) 

Hour Energy 

price 

($/MWh) 

Load 

(p.u.) 

1 47.47 0.6618 13 60.64 0.7941 

2 31.64 0.6765 14 40.88 0.7500 

3 31.65 0.6912 15 28.5 0.7500 

4 32.6 0.7059 16 38.75 0.7647 

5 40.78 0.7206 17 35.55 0.7794 

6 38.64 0.7500 18 112.42 0.8529 

7 158.95 0.7794 19 575.58 0.9412 

8 384.14 0.8235 20 87.72 0.9853 

9 67.27 0.8824 21 35.06 1.0000 

10 52.29 0.9118 22 47.18 0.9118 

11 44.59 0.8676 23 61.27 0.7353 

12 108.49 0.8382 24 33.9 0.7059 

 

Table 2. The specifications of the demand response 

installed in buses 15 and 27 [23] 

Hou

r 

bus 15 bus 27 

 Maximu

m 

reduction 

(kW) 

Price 

($/kWh

) 

Maximu

m 

reduction 

(kW) 

Price 

($/kWh

) 

8 15 6 12 14 

9 9 7 24 9 

10 5 4 5 12 

13 7 10 - - 

14 7 50 - - 

15 21 60 16 12 

16 7 8.5 19 8 

17 10 6 25 60 

18 4 10 18 60 

19 15 20 10 30 

20 28 30 18 10 

21 10 30 21 6 

22 3 30 8 20 

23 6 30 - - 

 

5.1.  The First Scenario 

the final results obtained from applying the proposed 

method on the 33-bus network as well as their 

comparison with other papers are shown in Table 3. It is 

observed that the proposed method is converted to the 

global optimal solution, and the solution opting for the 

problem is the same as that of other papers. After the 

reconfiguration, the open switches include 7, 9, 14, 32, 

and 37. Furthermore, losses after the reconfiguration 

declined from 202.6 to 139.5. 
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Table 3. The final result of reduction of losses in the 

33-bus network and its comparison with other papers. 

Solving 

problem 
Open switches Losses 

(kW) 

Initial 33  34  35  36  37 202.6 

MBA 7  9  14  32  37 139.5 

Ref. [24] 7  9  14  32  37 139.5 

Ref. [25] 7  9  14  32  37 139.5 

 

Fig. 2 shows the voltage profile for the 33-bus 

network. It can be observed that after the 

reconfiguration, the voltage profile of the system has 

improved considerably. 

 

 
Fig. 2. The voltage profile of the 33-bus network. 

 

The MBA convergence curve for the first scenario 

has been indicated in Fig. 3. MBA can be converged 

with a high rate to the global optimal solution. 

 

 
Fig. 3. MBA convergence curve. 

 

5.2.  The Second Scenario 

the results obtained from this scenario indicate that 

along the hours when the network demand level is low 

or the electricity price is cheap, the costs obtained from 

the network are low. On the other hand, when the 

network demand level increases or electricity price 

becomes expensive, the network operational costs also 

grow. This can be explained based on cost function. 

During low demand hours, the power losses decline and 

the need to receiving power from the network 

diminishes. However, during peak hours, more power 

should be received from the network, thus enhancing the 

network costs. 

Fig. 4 shows the network costs for the second 

scenario with and without MBA. The network 

reconfiguration has been successful in reducing costs 

across all the hours. Indeed, the reconfiguration has 

reduced the final cost by determining the most suitable 

topology for the network. Note that per all hours of the 

day, the optimal status of switches after the 

reconfiguration is equal to 37, 32, 14, 9, and 7. 

 

 
Fig. 4. The network costs in the second scenario. 

 

Fig. 5 demonstrates the minimum system voltage for 

the states before and after the reconfiguration across 

different hours. For this purpose, in the two states and 

per each of the day hours, the bus with the minimum 

voltage is identified, and its voltage is considered as the 

minimum voltage of the system. Evidently, the 

minimum voltage of the system declines with increased 

demand, and vice versa. 

 

 
Fig. 5. The minimum voltage of the system for 

different states across different hours of the day. 
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5.3.  The Third Scenario 

the results of this scenario for 24 hours have been 

illustrated in Fig. 6. Based on the results of this scenario, 

it can be stated that when the demand level of the 

network is low, the network losses are also low. On the 

other hand, when the demand level increases, so do the 

network losses. In addition, network reconfiguration 

during different hours of the day have effectively caused 

reduction of network losses, which has been more 

evident in the presence of demand response. The optimal 

status of switches after the reconfiguration in this case, 

as with the second scenario, has been equal to 37, 32, 14, 

9, and 7. 

 

 
Fig. 6. The network losses in the third scenario. 

 

6.  CONCLUSION 

In this paper, reconfiguration of distribution 

networks has been performed considering DR and using 

MBA. After suitable modeling of the problem, 

simulations have been done across three different 

scenarios.  The results obtained from the simulation 

indicated that reconfiguration effectively leads to 

diminished losses, improved voltage profile, and 

declined operational costs of the distribution networks. 

Furthermore, comparison of the results obtained from 

MBA with other papers revealed that this algorithm 

converges to the global optimal solution. During low 

demand hours, the power losses decline, and thus the 

need to receiving power from the network also drops. 

However, during peak hours, more power should be 

received from the network, thereby increasing the 

network costs. It was observed that in the cases with 

presence of demand response, the network losses 

declined further. 
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