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ABSTRACT: 
Due to geometrical errors, complexity, and interference, the steering vector in large-scale antenna arrays needs to be accurately 
calculated. Beamforming methods based on adaptive processing can effectively overcome complexities and limitations of large-
scale arrays. Here, we present the projection-based parallel linearly-constrained minimum variance (PBPLCMV) algorithm which 
calculates the steering vector of the desired signal through projecting the assumed steering vector onto the signal subspace. Then, 
the optimum weights of the adaptive beamformer are calculated using the parallel linear constrained minimum variance (PLCMV) 
algorithm. The simulation results show that for low input SNRs, the proposed method has better performance and output SINRs up 
to 18 dB more than the output SINRs of the parallel robust recursive linearly constrained minimum variance (PRRLCMV). 
KEYWORDS: Adaptive beamforming, Large-Scale array, PLCMV, Projection method. 
  
1.  INTRODUCTION 
In many array systems, the adaptive beamforming is 
used for receiving the desired signal from a particular 
direction, and for cancelling the interference signals. 
The performance of beamforming algorithms improves 
by increasing the number of the array elements; 
however, the complicacy of the calculations and the 
rate of data transmission are also increased [1]. 
Moreover, the array gets more sensitive to 
imperfections like mismatch of direction of arrival 
(DOA) and the array geometry error [2]. 
To overcome the abovementioned weaknesses, many 
methods have been suggested so far which can be 
classified into different groups. One type of the 
methods are based on partially adaptive processing [2-
3]; in these methods, a portion of the dimensions of the 
adaptive array is used for adaptation, which reduces the 
computational complicacy, and increases the 
convergence speed; however, the performance of the 
beamforming is reduced due to the lowered degrees of 
freedom. Another type of the methods is based on 
processing of sub-arrays, in which an adaptive array is 
divided into many sub-arrays, and each sub-array 
independently adjusts its adaptive weights. For the 
performance of these methods to be similar to the main 
beamformer, the number of the elements of the smallest 
sub-array should be more than the number of the signal 

sources, which then makes it difficult to reduce the 
complicacy of the calculations. This condition is not 
necessary for the efficient recursive least square 
(ERLS) algorithm [4] which indeed, unlike traditional 
subarray- based methods, the adaptive weights of each 
sub-array is adjusted with the use of the data received 
in that sub-array and the average results of other sub-
arrays. In this algorithm, an appropriate decomposition 
of the weight vector enhances the performance of the 
beamforming. Nonetheless, this algorithm will suffer 
from more complicate calculations than the traditional 
recursive least square if there is a high number of sub-
arrays.  
One of the methods based on the sub-array processing 
is the parallel linearly constrained minimum variance 
(PLCMV) algorithm put forward in 2005 on the basis 
of the linearly constrained minimum variance (LCMV) 
method [5]. Although the number of the degrees of 
freedom of the PLCMV algorithm is the same as that of 
the ERLS method, the later suffers from more 
expensive calculations. In the LCMV method, the 
optimum weight vector is obtained through minimizing 
the output power under a linear constraint determined 
with the previous knowledge of the steering vector of 
the desired signal [6]. However, in practice, the actual 
steering vector is not known, and thus, the PLCMV 
uses an assumed steering vector instead. This 
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assumption can be invalid due to some imperfections in 
the array, and consequently, lead to errors in the 
steering vector, which finally translates into low 
performance of the PLCMV algorithm [5].  
The parallel robust recursive linearly constrained 
minimum variance (PRRLCMV), proposed in 2009 [7], 
models imperfections of an array as generalized phase 
errors in the steering vector, and employs a gradient-
based method [8] to search for the actual steering 
vector; thereafter, the optimum weights in each sub-
array are obtained with the use of the LCMV algorithm. 
The PRRLCMV algorithm fails to function effectively 
in low signal-to-noise ratios (SNRs).  
A recently suggested new projection-based method 
estimates the actual steering vector through projecting 
the assumed steering vector onto the signal space [9]; 
this method does not require any estimation of the 
number of the sources, and enjoys better performance 
than the traditional projection-based methods, even in 
low SNR ratios.    
In this paper, we propose a new method called 
projection-based parallel linearly constrained minimum 
variance (PBPLCMV) which extracts the optimum 
weight vector through employing the PLCMV 
algorithm and estimating the actual steering vector with 
the use of the projection method presented in Ref. [9]. 
Our simulations results show that, in comparison with 
the PRRLCMV algorithm, the present method has 
better performance, and gives a more accurate 
estimation of the actual steering vector for low signal-
to-noise ratios. The rest of the paper is organized as 
follows; the signal modeling is presented in section 2, 
followed by the steps of the PLCMV algorithm in 
section 3; our proposed algorithm is presented in 
section 4; thereafter, section 5 gives the simulations 
results obtained using MATLAB software, and finally, 
the paper ends with the conclusion in section 6.  
 
2.  SIGNAL MODELING 
Assume that M  narrow-band signals collide with a 
uniform linear array (ULA) having N  elements spaced 
half a wavelength from each other. The 1N × -
dimensional vector of the received signal at time t can 
be written as: 

( ) ( ) ( )x t As t n t= +                                                       (1)  
where [ ]1( ),..., ( )MA a aθ θ=  is the response matrix of 
the N M×  array; ( )n t  is the 1N × -dimensional 
additive white Gaussian noise; ( )s t  is the 1M × -
dimensional vector of the received signal; ( )ia θ  is the 
array steering vector of input signal ( )is t with the angle 

iθ : 

sin ( 1)sin( ) 1, ,...,i i
Tj j N

ia e eπ θ π θθ −⎡ ⎤= ⎣ ⎦                                 
(2)

 

where (.)T  is the transpose operator. 

The correlation matrix of the array is obtained as 
follows: 

2H H
xx ss nR E xx AR A Iσ⎡ ⎤= = +⎣ ⎦                                  

(3) 

where (.)H  is the conjugate transpose operator; E  is 
the expectation; ssR  is the source correlation matrix, 
and I  is the identity matrix.  

The output of the array is obtained as the product of the 
conjugate transpose of the weight vector of the array 
and the received signal vector: 

( ) ( )Hy t w x t=                                                             (4) 

 

3.  THE PLCMV ALGORITHM 
In the PLCMV algorithm, the 1N × -dimensional vector 
of the received signal ( )x k  is divided into M  
subsections [5]: 

1 2( ) ( ), ( ),..., ( )
TT T T

Mx k x k x k x k⎡ ⎤= ⎣ ⎦                              
(5) 

 
where ( )ix k  is an 1iN ×  vector for iN , 1,2,...,i M=  
elements of the arrays in the ith subsection so that 

1

M
ii

N N
=

=∑ . 

The assumed steering and weight vectors are also 
divided using Eqs. (6) and (7). 

1 2( ) ( ), ( ),..., ( )
TT T T

p p p M pa a a aθ θ θ θ⎡ ⎤= ⎣ ⎦                         
(6) 

1 2( ) ( ), ( ),..., ( )
TT T T

Mw k w k w k w k⎡ ⎤= ⎣ ⎦                         
(7) 

Through dividing the vectors, the PLCMV algorithm is 
summarized in relations (8) to (14). 

( 1) ( ) ( ) ( ) ( ) ( )i i DQ i p y iw k w k S k a k x kθ μ+ = + −          (8) 
( ) 1 ( ) ( ) ( )DQ yS k S D k k Q kμ⎡ ⎤= − +⎣ ⎦                            (9) 

( ) ( )1 1

1 1
( ) ( )M M H

i i p i pi i
S S a aθ θ

− −

= =
= =∑ ∑                     (10)  

1 1
( ) ( ) ( ) ( )M M H

i i p ii i
Q k Q k a x kθ

= =
= =∑ ∑                    (11) 

1 1
( ) ( ) ( ) ( )M M H

i i ii i
y k y k w k x k

= =
= =∑ ∑                    (12) 

1 1
( ) ( ) ( ) ( )M M H

i i p ii i
D k D k a w kθ

= =
= =∑ ∑                   (13) 

( ) ( )H
y k y kμ μ=                                                       (14) 

Where k  is the repetition index, and μ  is the size of 
the step, being a positive small number.  
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4.  PROPOSED ALGORITHM 
The aim of our proposed algorithm is to estimate the 
steering vector in large-scale arrays, while still 
enjoying advantages of other methods used in small 
arrays for achieving optimum accuracy and 
performance. Here, the same method of the algorithm 
presented in Ref. [9] is used to estimate the steering 
vector of the desired signal; thereafter, the optimum 
weights of the adaptive beam-forming are calculated 
with the use of the PLCMV algorithm. We now first 
explain how to estimate the steering vector and then the 
proposed algorithm itself. 
The decomposition of the eigenvalues of the sample 
correlation matrix, which is an approximation of the 
array correlation matrix, is done with the use of the 
following relation: 

1
ˆ N H

xx i i ii
R λ υ υ

=
=∑                                                      

(15) 
where , 1, 2,...,i i Nλ = and iυ  are respectively the 
eigenvalues and eigenvectors of the sample correlation 
matrix. 
The eigenvectors corresponding to the large projections 
of the steering vector of the desired signal on iυ  are 
used for forming matrix P  which spans the subspace 
of the desired signal. Since in practice the mismatch 
between the assumed and actual steering vectors is not 
high, large projections of the assumed steering vector 
on iυ  vectors can be used for building matrix P ; these 
projections are determined using the following relation: 

2
( ) ( ) , 1,2,...,H

i pp i a i Nυ θ= =                                  
(16) 

Then, N projections are sorted in descending order as 
follows:   

( ) ( 1) ... (1)p N p N p≥ − ≥ ≥                                       (17) 

            
The N  eigenvectors corresponding to the eigenvalues 
of the sample correlation matrix are also sorted as 
[ ]1 1, ,...,N Nυ υ υ−

. Thereafter, the smallest n  satisfying 
inequality (18) is determined. 

( ( ) ( 1) ... ( ))p N p N p n
N ρ+ − + + ;

                         
(18) 

Constant 0 1ρ≺ ≺  is used for selecting large 
projections of ( )pa θ  on iυ .  Then, n  projections are 
considered as large projections, the corresponding 
eigenvectors of which build matrix P according to the 
following relation: 

[ ]1 ...n n NP υ υ υ+=                                              
(19) 

Finally, through projecting ( )pa θ  on the signal 
subspace spanned by P , the steering vector is 
estimated as follows: 

ˆ( ) ( )H
d pa PP aθ θ=                                                      

(20) 

Despite the traditional projection methods, no 
estimation of the number of sources is needed in the 
above-discussed method [9]. The assumed steering 
vector in the PLCMV algorithm is replaced with the 
estimated steering vector of the desired signal; the 
beam-forming weight vector is also updated using the 
PLACMV algorithm.  
Therefore, the proposed algorithm for large-scale 
arrays is summarized in the following four steps: I) the 
estimation of the steering vector of the desired signal 
through projecting the assumed steering vector on the 
subspace of the signal, using Eq. (20); II) dividing the 
vector of the received signal, the steering and the 
weight vectors into M subsections according to Eqs. 
(5), (6), and (7); III) updating the weight vector in each 
subsection using Eq. (8), and IV) forming the optimum 
weight vector from the weight vectors of the 
subsections using Eq. (7).  
 
5.  SIMULATION RESULTS 
The array used in our simulations, for the sake of 
making comparison with other methods [6-7], was 
made of 12 elements, each of which in one subsection. 
The angle of the desired signal was 0° , while the 
assumed steering angle was 3° . There were two 
interfering signals with the angles of 10°  and 20°− , the 
interference-to-noise ratio of which was 10INR dB= . 
The step size parameters of μ  and μ′  were 
respectively 0.002 and 0.007, and ρ  was assumed to 
be 0.7. The number of the repetition steps in our 
simulations were 2500. The results of each step of the 
experiment were the average of the results of 50 runs of 
the algorithm.  
In the first simulation, the performance of the proposed 
algorithm in beam-patterning has been compared with 
the PRRLCMV algorithm under the condition that 
there is an error in the steering direction. Figs. (1) and 
(2) show the beam-patterns formed by the two 
algorithms for the SNR values of 0 and -10 dB. When 
SNR is zero, both of the algorithms can well track the 
desired signal; however, the PRRLCMV algorithm fails 
to track the desired signal when the SNR is -10 dB, 
while our proposed algorithm tracks the desired signal 
at the position of 0 degree, and neutralizes the 
interference sources at the positions of 10 and -20 
degrees, through forming the main lobe and appropriate 
nulls respectively at the locations of the main signal 
and interference sources. 
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Fig. 1. Comparison of the beampatterns among the 
proposed algorithm and PRRLCMV algorithm in 

SNR=0dB  
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Fig. 2. Comparison of the beampatterns among the 
proposed algorithm and PRRLCMV algorithm in 

SNR=-10dB 
 

The criterion for making comparison in the second 
simulation was the output signal-to-interference-plus-
noise ratio (SINR). We have compared the standard 
linearly-constrained minimum variance (SLCMV) 
algorithm with the actual steering vector [6], the 
PRRLCMV algorithm with erroneous steering vector, 
and the present algorithm with erroneous steering 
vector. The variation of the output SINR versus the 
input SNR values has been shown in Fig. (3). It is 
inferred that, as compared with the PRRLCMV 
algorithm, the present algorithm has higher output 
SINR values for SNR values less than -5 dB; its output 
SINR values are only 1-2 dB less than those of the 
standard algorithm. Therefore, the proposed algorithm 
can remove errors in the steering vector estimation in 
beam-forming for very small SNRs, i.e. less than -5 dB. 
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Fig. 3. The output SINR versus SNR 

 
6.  CONCLUSION 
The PBPLCMV algorithm has been put forward in this 
paper. In this algorithm, the actual steering vector is 
estimated through projecting the assumed steering 
vector on the signal subspace, and then, the assumed 
steering vector in the PLCMV algorithm is replaced 
with the estimated steering vector. Our simulations 
results show that the proposed algorithm has better 
performance than the PRRLCMV algorithm for SNRs 
less than -5 dB. Moreover, the output SINRs of the 
present algorithm for input SNRs less than -5 dB is up 
to 18 dB higher than the output SINRs of the 
PRRLCMV algorithm.  
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