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1.  INTRODUCTION 

Due to failure in design and machine production equipment, the defect of the complex industrial processes, like 

internal holes, pits, abrasions, and scratches arise unfavorable working conditions. Products easily disintegrate and be 

inclined to weariness because of daily application. These defects raise the costs incurred by enterprises, compress the 

service life of simulated products, and result in an expansive destruction of resources, thereby generating significant 

harm to people and their safety [1]. Therefore, catching defects is a center competency that companies possess to enhance 

the quality of the simulated products without influencing production. Automated defect detection technology evident 

benefits over manual detection. It adjusts to an inappropriate environment and achieves with high precision and 

efficiency. The earlier research on this scope decreases the production cost enhance production efficiency and product 

quality for the intelligent transformation in industry. 

Defect detection and classification need to be feasted as unique problems associated to the field of artificial vision. 

The general purpose of mimicking human vision is to determinate and organize a subject. These two objectives bonded 

together. We handle both classes and concentrate on the precise solutions that intensely associated to visual processing 
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methods, particularly on inspection techniques in industrial applications. Quality control is an essential characteristic in 

the industrial production line. Some approaches employed to evaluate the quality of a process. Relying on the method 

used to determine a defect on a surface/volume, quality control strategies categorized as destructive or non-destructive 

(See Fig. 1). Non-destructive testing aims at observing an element to detect a defect without extracting samples from it 

or perpetually impairing it. 

 

 

Fig. 1. Categorization of the quality control techniques. 

 

Many researchers reviewed defect detection technologies to supply references for the application and research of 

defect detection technology. We outlined the application of hyperspectral [2], pulsation spectrum, infrared [3], etc. For 

surface defect detection, Xianghua Xie [4] contemporary advancements in surface detection utilizing computer vision 

and image processing techniques. By approximating of the findings of past investigations, it revealed that surface defect 

detection based on image processing needs high real-time performance in industrial applications. For fabric defect 

detection, researchers [5]-[6] investigated the application and development of defect detection methods typically 

employed in the textile fabrics from the standpoint of defect detection development of the textile industry production. 

Thermal imaging technologies employed in many industrial areas. I. Jorge Aldave [7] concentrated on the comparison 

of consequences received with commercially general non-experimental IR techniques to supply references for non-

destructive defect detection. Defect detection technology is a hot topic in the enterprise. Defect detection technology is 

a desirable topic in the enterprise. Nevertheless, researchers categorize product defect types [8], the main detection 

techniques, summary of applications of defect detection technology, existing equipment for defect detection, etc. The 

review of the research status of relevant technologies have yet to be realized. 

The visual based approach is one of the most common defect detection procedures in industry. Nevertheless, the 

traditional visual assessment is a non-measurable process with unstable and subjective outcomes. It caused authors to 

devise new automated defect detection systems with challenging requirements because of the complexity and 

individuality of any specific problem to decode. Nevertheless, a system relies on the fabric effects of the surfaces to 

observe the environmental requirements. 

The definition of a defect and its categorization is a manner that effects on series of subjective decisions. The main 

features of a defect depend on the desired precision and resolution of the detection approach; the size of defects vary 

among industrial applications. It recommended to specify a quality criterion of the outcome in every industrial 

application before organizing and executing the automated system. 

This study organizes the common defects of electronic elements, pipes, welding regions, and fabric textiles. It 

outlines the mainstream deep learning technology for defect detection with its application status to analyze the 

application situation of the major defect detection equipment, to supply reference for defect detection technology in 

approach and useful application. 

This study contained as follows. In Sect. 2, we present a taxonomy of defects that appear on metal surfaces. In Sect. 

3, we represent the defect detection technologies. In Sect. 4 and Sect. 5, we reviewed the existing machine learning and 

deep learning methods for defect detection. In Sect. 6, we express the challenges and finally concluded the conclusion. 

 

2.  TAXONOMY OF DEFECTS 

In the industrial exhibition area, quality control strives at maintaining a quality level or at localizing the defects for 
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further repair. Conventional detection techniques deal with regular, macro-sized and complex deviations of surface 

defects. Basically, every artificial optical defect detection method strived to detect defect and classified them for 

additional processing. For a reasonable classification, industrial applications require well-structured databases of the 

possible defect types. Due to the randomness and essence of the defects that can appear in the operation scenarios, 

showing such a general and complete database for a classifier is challenging way. 

In this area, basically every application utilizes a material-based defect classifier. The proposed taxonomy of defects 

organized to two major groups: visible and palpable. It is worth mentioning that the categorization is basically and not 

sufficient for systems with specific conditions. It delivered a strong and reliable basis for a classification with artificial 

intelligence system. The essential assumption of this defect categorization is a hardly subjective decision. This decision 

is based on a threshold and a logical-based illustration of the size ratio of both the element and the defect. Thus, the 

structure of the proposed taxonomy organized by size ratios and spatial features. 

 

3.  DEFECT DETECTION TECHNOLOGIES 

Product defect detection technology detects the surface and internal defects of outcomes. The defect detection 

technology guides to the detection technology of spot, pit, scratch, and color differences. Internal defect detection 

technology contains internal flaw detection, hole detection and crack detection [9]. Some techniques used to detect 

product quality. These consists deep [10], magnetic powder [11], eddy current testing [12], ultrasonic testing [13], and 

machine vision [14] detection methods. Moist magnetic particle detection combines the magnetic powder in all liquid 

media. Magnetic powder observes the location of defects via liquid force and the interest of the superficial magnetic 

domain [15]. The moisture detection technique has high sensitivity [16]. Dry Magnetic powder testing [17] connects 

magnetic powder onto the cover of the magnetized workpiece for defect detection. This technique employed for the 

local examination of defects in large casting, welding parts, and other features that are inappropriate for moist detection. 

The constant magnetic particle detection method notices defects in magnetic break or powder under the external 

magnetic field [18]. This method employed to monitor the defects in the external magnetic field. Some elements effect 

on the precision of magnetic powder testing contain roughness and the profile of the test piece, the geometrical features 

of defects, the specified magnetization approach, and the quality of operators [19]. The factors that affect the sensitivity 

of testing are imaging reagents, the performance of fluid, the quality of operators, and the impact of defects. Factors that 

affect the accuracy of the detection of vortex current are the parameters of material and the shape of the test piece [20]. 

The ultrasonic testing product influenced by the angle between the defect surface and the ultrasonic propagation 

direction [21]. If the angle is vertical, the signal produced is strong and the defect is efficiently detected. If the angle is 

horizontal, the signal returned is weak in which detecting make a leak straightforward. Thus, choosing the proper 

detection sensitivity and corresponding search to decrease leakage detection is necessary [22]. The factors influence 

ultrasonic testing contain projection direction, investigation effectiveness, sound connection quality, and instrument 

operating frequency [23]. 

Machine vision detection consists of image acquisition, defect detection, and classification. Because of accurate, 

non-destructive, and low-cost characteristics, machine vision is employed. Machine vision recognizes objects based on 

the color, texture and geometric features of objects. The quality of image acquisition defines the difficulty of image 

processing. The quality of the image processing algorithm impacts the accuracy, error detection rate of defect detection, 

and classification [24]. The deep learning approach is likewise a defect detection approach that is based on image 

processing, which utilized to acquire proper features in massive data [25]. Table 1 displays a comparison of employed 

product defect detection approaches.  

 

Table 1. Comparison of standard defect detection techniques 

Method Advantage Disadvantage 

Ultrasonic testing Easy to use 
Strong penetration 

High sensitivity 

Automatic detection 

Portable equipment 

Unsuitable for complex work pieces 

Machine vision detection High precision 

Automatic detection 
Many applications 

Surface detection only 

 

Magnetic powder testing Visualization in shape, size, and position 

Suitable for any size 

High precision 

Low cost 

Difficult automatic detection 

Influenced by geometric shape and test pieces 

Limited to ferromagnetic materials 
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Osmosis testing High sensitivity 

Affectless on shape and material type 

Difficult detection for porous materials and 

automatically 

Slow detection speed 

Eddy current testing Non-contact detection 

Fast detection speed 

High sensitivity 
Automatic detection 

Suitable for high temperature 

environments 

Low detection accuracy 

Difficult detection for deep detection 

Limitation for applicable materials 

Not-visualization for shape and size 

X-ray testing Non-destructive detection 
Strong penetration 

Affectless on material and structure 

Easy operation 

Radiation affects 

 

The traditional defect detection methods and the popular deep learning defect detection methods have their benefits. 

These methods are positively concentrated.  Osmosis testing technology [26] is an applicable for detecting defects in 

highly absorbent and non-porous materials. 

Most of the traditional detection techniques need to depend on manual assistance to complete, the equipment product 

cost increased, which is not adaptable and defined by the equipment life and manufacturing accuracy. Creative defect 

detection methods, especially machine vision and deep learning techniques [27], have evolved as one of the important 

technologies for automating defect detection due to their versatility and lack of support on human assistance. 

Corresponded to traditional defect detection techniques, the new technologies present more useful examination 

results and decrease costs. Though these nevertheless depend on large amounts of known data to guide model updates 

and enhance inspection accuracy. 

 

3.1.  Artificial Visual Processing Techniques 
The primary purpose of visual-based approaches is to comprehend the world both natural and artificial illustrations. 

The procedure in the latter is to recognize images to look for a mathematical/logical connection between the input and 

representations. This connection is a change from the input to the model to reduce the information included in the image 

to appropriate information for the application domain. 

Image representation approximately separated into four levels, as depicted in Figure 3. The order of image 

presentation and the background functions/algorithms facilitated as low and high-level image processing. Low-level 

processing techniques do not employ prior knowledge about the content of the image. It means that the techniques that 

belong to this group applied to every image. This group contains: (1) image compression; (2) pre-processing; (3) 

sharpening; and (4) edge extraction techniques. 

The higher-level processing techniques are complicated and work above the mathematical model of the image by 

selecting classifiers and where imitating the human understanding is required. 

 

 
Fig. 2. The hypothetical levels of image presentation for image analysis. The modification from the analog to the 

digital domain consequences in some information loss. 

 



Majlesi Journal of Telecommunication Devices          Vol. 13, No. 3, September 2024 
 

121 

 

As illustrated in Fig. 2, to achieve the level of the picture with content, several features of the image have to be 

conveyed. Two different principles devote for unaffectedly emerging visual statements. The one achieved about the 

object to be found. The second performed with no given information about the object; but with knowledge on the 

environment. Most non-destructive visual examination techniques to find surface irregularities apply textures, performed 

by low-level processes. These principles can be replicated in artificial systems, but utilizing distinct methods. To identify 

particular defects on a surface, a descriptor database of the possible defects must be installed. 

Textural Defect Detection: Surfaces supply unique information for artificial visual detection. The latter utilize 

various types of texture analysis because the general task of defect detection is a surface analysis problem. The favorable 

and accurate method to represent a texture is to extract its unique features, although this turns out to be a demanding 

task. 

 
3.2.  The Traditional Method for Defect Detection Technology        

Non-destructive defect detection of outcomes is utilized in manufacturing to analyze the advantages and 

disadvantages of diverse algorithms and enable to comprehension of the algorithms. We concentrate on the application 

status by the combination of classical defect detection and different algorithms. Figure 3 illustrates the diverse defect 

detection techniques and their affiliated performance results or outlines for non-destructive defect detection. 

The ultrasonic defect detection techniques utilized to detect the defects in the internal structure of the sample. Thus, 

the results contemplated in the performance of the ultrasonic signal [28]. The results, as illustrated in [29], indicates that 

the ultrasonic defect detection techniques have the advantages of fast detection speed and simple operability. They also 

have special advantages in detecting defects in the internal material and structure as well as the size of the product. 

However, this method is unsuitable for workpieces with complicated structures with low detection efficiency. 

Ultrasonic methods are ineffective for catching defects on the upper surface of the sample since a nonlinear 

relationship exists between the defect position and the signal obtaining the time, which shows to the defect to be arranged 

to the unaffected pass lock end [30]. 

The denser the allocation of the real position of the effect, the higher the confidence of the “trailing” spectacle of the 

direct access wave signal on the map. The machine vision-based defect detection techniques are appropriate for the 

detection of surface defects in products, which has reached up to 88.60% accuracy in binary defect detection problems 

[31]. The accuracy of defect detection over scratches, gaps, hierarchies, pitting, edge cracks, crusting, and inclusions 

achieve 95.30% [32]. The defect detection techniques based on filtering has a strong ability to explain the disruption 

signal and detection of the tool defect inside the machine. 

To the categories of defect detection techniques for mechanical products, several other technologies are unrestricted 

like the X-ray image defect detection technology [33], Pulse magnetoresistance approach [34], and Acoustic emission 

technology [29]. 

Statistical Approaches: Statistical methods concentrate on study the spatial allocation of pixel values in a registered 

image. In this classification, it is achievable to calculate numerous publications and methods, varying from low-level to 

higher-order statistics, like histogram statistics, autocorrelation, local binary patterns (LBP) and others. Histogram 

effects and statistics support for both higher and low procedures with low computational cost. These functions include 

operations from statistics. It contains other histogram comparison statistics utilized for texture features, like L1 and L2 

norm, EMD distance, divergence, Chi-square, and the normalized correlation coefficient. The technique catches defects 

by reviewing whether the distribution of the monitored data is distinct from a baseline recorded allocation in an adaptive 

manner. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (1) 

𝑆𝑝𝑒𝑐𝑖𝑡𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (2) 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒

=
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
 

(3) 

 

where TP, TN, FN and FP devoted for true positive, true negative, false negative and false positive, respectively. 

Structural Approaches: Structural Approaches (SA) concentrate on the spatial location of the texture components. 

These extracted from the texture and defined as texture primitives. Using spatial setup rules to texture primitives result 

in a dynamic texture model. The texture primitives are simple grey-scale regions, line features or individual pixels. 

These elements used in a mixture with placement rules which emanated from the geometric associations or spatial 

statistics of these primitives. 
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Fig. 3. Overview and analysis of defect detection techniques. 

 

Filter-Based Approaches: Images represented by glimpsed features like edges, textures and regions (Fig. 3). 

Purifying these characteristics is one of the prematurely tries in image processing scope. It is a low-level process, and 

the edges diagnosed as spatial premature passion modifications in the image [35]. To drag edges, it employed some 

filters in the spatial part, like Sobel, Robert, Canny, Deriche, Laws and Laplacian filters. In most issues, working in this 

part implicates noise and difficulties to discover a plain kernel. Thus, converting the images into the frequency part with 

Fourier Transformation (FT) provides the power to efficiently filter the noise as represented in [35]. The fundamental 

logics converted the image into Fourier part and then filtered. After it, these logics reconverted into the spatial scope. 

The contrasts between the initial and processed images regarded as possible faults based on the involved procedure in 

the conversion [36]. 

The Fourier conversion relies on the whole image. These effects yielded it incapable to localize defects in the spatial 

part. The considerable solution is to use a FT for spatial reliance. If the window function be Gaussian, it results in the 

Gabor transform. The Gabor transform (GT) tries the optimal combined localization in these parts [37]. Two types of 

methods are of concerned. First one when some filters stowed in predetermined frequencies and directions to protect all 

conceivably emerging frequencies in the image and compute the correlation [38]. Nevertheless, this method is intensive 

to gain high distinction quality. Second one involves the performance of the optimal filters to associate with the selected 

recognition region, whereas acquiring the optimal sets is difficult [39]. 

With equivalent effects to the Gabor transform, Wavelet Transform (WT) illustrations employed as defect detectors 

[40]. WTs established on short waves of changing frequency and restricted period reached wavelets and supply 

provincial information from any directions on any input image [41]. 

Model-Based Approaches: Techniques based on model organized into three groups: (1) fractal, (2) autoregressive, 

and (3) random field models. Fractals recreate an effective role in the characterization of the natural surfaces, these 

firstly conveyed by Mandelbrot [42]. The primary idea of the autoregressive model (AR) is to describe texture 

characteristics based on the linear dependences of pixels [43].  

Markov random fields techniques integrate both statistical and structural information of context conditional 
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commodities like pixels relying on their neighbor pixels [44] and classification problems [45]. 

 

Table 2. A preference of most typically used textural defect detection approaches. 

Approach Method Reference 

Statistical Histogram 

Co-occurrence matrix 
Local binary pattern 

Other gray level statistics 

Auto-correlation 

Registration-based 

[46] [47] 

[48] [49] 
[50] 

[50] [51] 

[49] [52] 
[53] 

[54] 

Structural Primitive measurement 

Edge features 

Skeleton representation 

Morphological operations 

[55] 

[56] 

[57] [58] 

[59] 

Filter 

based 

Spatial domain filtering 
Frequency domain analysis 

Joint spatial/spatial 

frequency 

[60] 
[61] [62] 

[63] [64] 

Model 

based 

Fractal model 

Random field model 

Texem model 

Auto-regressive 

[65] 

[66] 

[67] 

[68] 

Other Color texture analysis [67] [63] 

[55] 

 

4.  MACHINE LEARNING FOR DEFECT DETECTION TECHNOLOGY 

Here, the main direction is the emerging authority of the machine learning techniques. These techniques employed 

in all fields of product defect detection. The defect detection technology split into two major types: surface defect 

detection [69] and internal fault diagnosis [70]. Surface defect detection is equivalent to ’visual’ detection, understanding 

from the target characteristics in an image with the benefit of deep learning image processing technology to organize 

and discover product defects, whereas internal defect diagnosis is equivalent to ’Auditory’ detection, the diagnosis of 

defects in rotating parts like directions by means of modal analysis utilizing digital signals in the time or frequency part. 

We discovered the defect detection procedures and improved feature extraction [71]. Because Tool Condition 

Monitoring is a challenging, authors proposed a new ML-based method to describe failure symptoms of cutting tools in 

the time-frequency domain in 2024. This investigation concerns five cutting tools, and the results validated utilizing the 

Fast Fourier Transform, Short-time Fourier Transform, Empirical Mode Decomposition, and Variation Mode 

Decomposition methods. These methods applied to demonstrate that the suggested methodology better recognizes 

failure symptoms corresponded to other methods. One benefit of the suggested method is   to regrade a lower order of 

the system results in time–frequency domain [72]. The canonical correlation analysis (CCA) is an issue for the lack of 

robustness against outliers. The authors in 2024 suggested a method to overcome this issue. The rendition and benefits 

of the suggested methods illustrated with two case studies. The results of two case analyses demonstrate that the RCCA 

and RSCCA methods have high robustness against outliers, and the robust FDD method is able to produce reliable 

results even if using the low-quality training data with outliers [73]. 

5.  DEEP LEARNING FOR DEFECT DETECTION 

Deep learning technology evolved to completed success in object detection, intelligent robot, and other fields. Deep 

learning has a type of neural network structure with multiple convolutions layer. 

By integrating low-level characteristics to construct a conceptual high-level presentation of attribute, the data were 

sufficiently advanced in abstract ways like edge and shape to enhance the significance of the deep learning algorithm 

[74]. 

Thus, many researchers attempt to employ deep learning technology to defect detection of product and enhanced the 

product quality [75]- [76]. 

Table 2 outlines the benefits and drawbacks of deep learning techniques typically employed in product defect 

detection. It especially contains convolutional neural network (CNN) [77], autoencoder neural network [78], deep 

residual neural network [79], full convolution neural network [80], and recurrent neural network [81]. 
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Table  3. Deep learning defect detection techniques. 

Method Advantage Disadvantage 

Convolutional neural 

network 

Strong learning ability 

High-dimensional data 

High-order features 

Increase the network depth 

Auto encoder neural network Good representation ability 

Good robustness 
Consist the dimension of the 

input 

Depth residual neural 

network 

Better classification performance 

Not-overfitting 
Cooperate with deeper depth 

Full Convolutional neural 

network 

Extracting the feature with any size 

image 

Obtaining the high-level semantic 

prior knowledge 

Low speed of model 

Recurrent neural network Learning the essential features with 

fewer sample data 
Overfitting phenomenon due to 

increasing the number of iterations 

 

Deep learning is one of the quickest developing fields in computer sciences due to its capability to translate 

approvingly complex problems [82]. The decadent collection of classic machine learning methods resulted in the 

expansion of deep learning that earned its motivation from statistical learning. Most of the methods noted in the earlier 

sections regarded as traditional solutions, where the emphasis is on the explicitly planned features which can be 

contesting to represent in complex issues.  

Nevertheless, deep learning utilizes data presentation learning to accomplish tasks and convert data into abstract 

expressions that promote the features learned for systems. This capability of deep learning overwhelms the condition of 

complex characteristics. Both deep and traditional machine learning exist data-driven artificial intelligence methods 

capable to successfully model deterministic directions, which are impossible to humans and connections between input 

and output. Deep learning disposes the capability of executing feature learning, model structure and model training by 

choosing various kernels and optimizing parameters. 

A number of suitable investigations issued on defect detection explanations utilizing deep learning [83]- [84]. 

In 2015 Ren et al. [85] presented a technique by integrating the region proposal network (RPN) and Faster Region-

based Convolutional Neural Network (Faster R-CNN) for object detection to develop about cost-free region suggestions. 

In [86], the authors employed a Faster R-CNN-based visual inspection approach to notice and categorize five defect 

classes with 90.6%, 83.4%, 82.1%, 98.1%, and 84.7% average precisions. 

Their procedure completed the task especially faster than a traditional CNN based approach, which is essential for 

real-time implementation. Wang et al. [87] conceived a more rapid R-CNN algorithm to translate the speed problem of 

CNNs and to find short defects in complex products where they gained 72% detection and 81% classification accuracy. 

Liu et al. [88] presented a defect detection approach based on semantic segmentation. They employed a development 

and elongation of CNN called Fully Connected Networks (FCN). They converted the comprehensively combined layer 

of a CNN into a convolution layer. They acquired 99.6% accuracy on the German DAGM 2007 dataset. Lately, Kumar 

et al. [89] employed a deep convolutional neural network (DCNN) to catch and organize defect in tailors and performed 

and average of 86.2% testing accuracy, 87.7% precision and 90.6% recall. 

Li et al. [90] connected Gabor filters and Pulse Coupled Neural Network (PCNN) for fabric defect detection and 

reached 98.6% accuracy. This factor is one of the most important factors by utilizing CNNs. To decrypt this problem, 

Yang et al. [91] designed a profitable and strong approach as virtual defect rendering to decode the problem of small 

datasets. 

In a current study, Yang et al [27], designed a DCNN based system to catch and categorize defects to appear during 

laser welding in battery manufacturing. But they offered a novel model contacted Visual Geometry Group (VGG) model 

to enhance the efficiency of defect classification. Their examination on 8000 examples with a 99.87% accuracy 

confirmed that the pre-trained VGG model has small model size, lower defect positive rate and shorter training time and 

foretelling time. It is recognized that their model is favorably appropriate for quality assessment in an industrial 

environment. 

CNN is a feedforward neural network. CNN consists of one or more convolutional layers and related layers and 

associated weights and pooling layers [92]. Publications is a famous LeNet convolution neural network configuration. 

LeNet network configuration utilized to detect defects in two conditions: (1) develop a complex multi-layer CNN 

structure, employ various network configuration to additional image content characteristics, and comprehensive end-to-

end training to detect defects in images [93]- [94]; (2) integrate CNN with CRF model, prepare CNN with CRF energy 
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function as restriction or optimize network prediction results with CRF. 

Autoencoder network primarily contains two steps: coding and decoding. In the first step, the input signal 

transformed into a coding signal for feature extraction; in the second step, the feature information is converted into a 

reconstruction signal. After it, the reconstruction error is underestimated by modifying the weight and bias to discover 

the defect detection [95]. The contrast between autoencoder networks and other machine learning algorithms is that the 

learning objective of the autoencoder network is not for classification, whereas for characteristic learning [96]. It has a 

powerful capability of autonomous learning and favorably nonlinear mapping. It learn nonlinear metric procedures to 

translate the problem of segmentation of difficult background and foreground regions [97]. 

The deep residual network counts a residual module on the basis of the convolutional neural network. The residual 

network is represented by effortless optimization and enhances the accuracy by improving the network depth [98], CNN, 

Generative Adversarial Networks [99], etc. As the depth of the network grows, the extraction characteristic grows, 

whereas it is effortless to yield the activation function not to combine. 

The purpose of the deep residual network is to optimize the increasing number of network layers with residual while 

improving the network structure. The output and input segment dimensions of the convolution layer in the residual unit 

are identical. Then via the activation function, the loss is decreased. 

The completely connected layer is a relation between any two nodes between two bordering layers. A thoroughly 

connected neural network employs a completely connected operation. There are more additional weight values, which 

indicate that the network takes up more memory and calculations [100]. During the analysis of the totally connected 

neural network, the feature map developed by the convolution layer mapped into a fixed-length feature vector. The 

entire convolution neural network obtains the input image of any size, and utilizes the deconvolution layer to sample the 

feature map of the last convolution layer. It retrieves to the same size of the input image. In that case, a prediction 

developed for each pixel, while maintaining the spatial information in the original input image. Eventually categorizes 

the feature map of the upper sampling pixel by pixel. 

The recurrent neural network utilizes the recurrent convolution process to substitute the convolution operation on 

CNN. The contrast is that the recurrent neural network does not achieve the pooling layer operation to remove the 

features behind the recurrent operation for removing the input layer features. While it utilizes the recurrent convolution 

operation to process the features of the samples. 

For error detection in this scope, some works are of concern. Table 2 shows the comparison of the related works. In 

[101], Clathrate hydrates find diverse significant applications including, but not limited to, future energy resources, gas 

storage and transport, gas separation, water desalination, and refrigeration. Studies on the nucleation, growth, 

dissociation, and micro/nanoscale properties of clathrate hydrates that are of utmost importance for those applications 

are challenging by experiments but can be accessible by molecular simulations. By this method, however, the 

identification of cage structures to extract useful insights is highly required. Herein, we introduce a hierarchical topology 

ring (HTR) algorithm to recognize cage structures with high efficiency and high accuracy. The HTR algorithm can 

identify all types of complete cages and is particularly optimized for hydrate identification in large-scale systems 

composed of millions of water molecules. Moreover, topological isomers of cages and n × guest@cage can be uniquely 

identified. Besides, we validate the use of HTR for the identification of cages of clathrate hydrates upon mechanical 

loads to failure. 

In 2022, the prompt detection of early decay in the pavement could be an auspicious technique in road maintenance. 

Admittedly, early crack detection allows preventive measures to be taken to avoid damage and possible failure. With 

regards to the advancement in computer vision and image processing in civil engineering, traditional visual inspection 

has been replaced by semi-automatic/automatic techniques. The process of detecting objects from the images is a 

fundamental stage of any image processing technique since the accuracy rate of the classification will depend heavily 

on the quality of the results obtained from the segmentation step. The major challenge of pavement image segmentation 

is the detection of thin, irregular dark lines cracks that are buried into the textured backgrounds. Although the pioneering 

works on image processing methodologies have proven great merit of such techniques in detecting pavement surface 

distresses, there is still a need for further improvement. The academic community is already working on image-based 

identification of pavement cracks, but there is currently no standard structure. This literature review establishes the 

history of development and interpretation of existing studies before conducting new research; and focuses heavily on 

three major types of approaches in the field of image segmentation, namely thresholding-based, edge-based, and data 

driven-based methods. With comparison and analysis of various image segmentation algorithms, this research provides 

valuable information for researchers working on enhanced segmentation strategies that potentially yield a fully 

automated distress detection process for pavement images with varying conditions [102].  

In [103], Laser processing of cutting tool materials particularly cemented carbides can induce many surface defects 

including porosity, balling, and micro-cracks. When present in the microstructure of cutting tools, micro-cracks can lead 

to chipping and early failure. The detection and identification of cracks can be used to predict tool performance post 
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laser processing. To develop a method for crack identification scanning electron microscopy (SEM) images were used. 

The manual review of SEM images is subjective and time consuming. This study presents a method to identify and 

quantify cracks from an SEM microstructure of tungsten carbide (WC) in MATLAB. Image processing algorithms were 

used to segment crack regions from other surface defects and the background microstructure; and subsequently to extract 

crack geometry and information. The results show successful segmentation of cracks from SEM images with an 

identification accuracy greater than 95 % across a range of different laser processing parameters. 

In [104], the construction of a building involves tremendous investments of time, money, and emotion. Therefore, 

every stakeholder involved in the process starting from construction companies to the tenants wants to make sure that a 

structure is built well and that it can serve its purpose without any safety hazards. While the majority of factors 

concerning a building’s safety are evaluated manually, there are factors like detecting visible structural damage that 

might incur a severe investment of time via manual inspection. Therefore, the need of the hour is to engineer automated 

systems that with the help of computer vision techniques will detect visually discernible defects in buildings. The paper 

proposes two approaches, namely digital image processing-based and deep learning-based that deal with creating surface 

crack inspection systems and attempt to showcase their performances in perspective by comparing their results across 

four different types of surface crack image datasets. 

In [105], one of the major challenges in the construction industry is the detection of cracks in concrete structures and 

identification of failure types of these structures that lead to their degradation. Manual quality checks are prone to human 

error, and require longer response time and specialist experience and knowledge. Therefore, visualizing the cracks and 

identifying failures in concrete structures using computer techniques is now a preferred option. The present work focuses 

on identifying the cracks using image processing and failure pattern recognition technique by employing suitable 

machine learning algorithms, and validating the techniques using Python programming. For this purpose, M30 grade 

geopolymer and conventional concrete beams were cast using Basalt Fiber Reinforced Polymer/Glass Fiber Reinforced 

Polymer and Steel bars. The beams were subjected to four-point static bending test by varying the shear span to the 

effective depth ratio. The experimental images were used for image processing and failure pattern recognition in Python 

language. Employing six machine learning classifiers, the failures in the structures were classified into three classes 

namely, flexure, shear, and compression. The machine learning classifiers were also adopted to determine the confusion 

matrix, accuracy, precision, and recall scores. It was found that among the six classifiers used, the support vector 

classifier gave the best performance with 100% accuracy in identifying the failure patterns. 

In [106], annually, millions of dollars are spent to carry out defect detection in key infrastructure including roads, 

bridges, and buildings. The aftermath of natural disasters like floods and earthquakes leads to severe damage to the 

urban infrastructure. Maintenance operations that follow for the damaged infrastructure often involve a visual inspection 

and assessment of their state to ensure their functional and physical integrity. Such damage may appear in the form of 

minor or major cracks, which gradually spread, leading to ultimate collapse or destruction of the structure. Crack 

detection is a very laborious task if performed via manual visual inspection. Many infrastructure elements need to be 

checked regularly and it is therefore not feasible as it will require significant human resources. This may also result in 

cases where cracks go undetected. A need, therefore, exists for performing automatic defect detection in infrastructure 

to ensure its effectiveness and reliability. Using image processing techniques, the captured or scanned images of the 

infrastructure parts can be analyzed to identify any possible defects. Apart from image processing, machine learning 

methods are being increasingly applied to ensure better performance outcomes and robustness in crack detection. This 

paper provides a review of image-based crack detection techniques which implement image processing and/or machine 

learning. A total of 30 research articles have been collected for the review which is published in top tier journals and 

conferences in the past decade. A comprehensive analysis and comparison of these methods are performed to highlight 

the most promising automated approaches for crack detection. 

In [107], cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the 

development of robust automated distress evaluation systems that comprise a low-cost crack detection method for 

performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have 

labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are 

only usable for specific pavement types. This paper proposes a new method that uses an adapted version of the weighted 

neighborhood pixels’ segmentation algorithm to detect cracks in 2-D pavement images. The method uses the Gaussian 

cumulative density function (CDF) as the adaptive threshold to overcome the drawback of fixed thresholds in noisy 

environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of 

various pavement noise conditions. The method proved to be time and cost-efficient as it took less than 3.15  s per 

320  ×  480 pixels’ image for a Xeon (R) 3.70  GHz CPU processor to generate the detection results. This makes the 

proposed method a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement 

crack detection systems. The validation results were promising for the detection of medium to severe-level cracks 

(precision  =  79.21%, recall  =  89.18%, and F1 score  =  83.90%). 
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In [107], in addition to causing damage to vehicles, road defects are one of the main causes of vehicle accidents 

which lead to loss of human lives. Many methods of detecting defects have been introduced over the years to reduce the 

consequences of these defects. One of these methods is image processing. Use of image and video processing has many 

applications in medicine, science, agriculture, and defect detection in structures. It has been used for defect detection on 

roads because timely detection and analysis of defect is very important for road serviceability and safety of the people. 

Detection of a defect by image processing broadly follows some of the basic steps which include feature extraction, 

edge detection, morphological operators, and training of data. Different approaches are used for various kinds of defect 

detection and analysis which have replaced the manual inspection method of roads saving time and resources. This 

chapter discusses the basic steps involved in defect detection using image processing along with existing systems that 

use machine learning and artificial intelligence for the detection of defects from a distance. To write this chapter, papers 

on the topic of image and computer vision-based defect detection systems have been consulted. 

In [108], image processing is a subset of digital signal processing that has different applications and benefits in 

different fields. Digital processing is in fact the digital image processing that can be performed with the help of computer 

science, programing, and artificial intelligence. Image processing is one of the applications and subsets of artificial 

intelligence that, as its name suggests, processes digital images and displays a certain output with specific information 

based on predefined training. Nowadays, the applications of image processing technology in various fields of science, 

technology have caused a lot of attention in order to expand the capabilities of arterial intelligence in different 

engineering challenges. This paper presents recent development and applications in image processing systems in order 

to move forward the research field by reviewing and analyzing recent achievements in the published papers. As a result, 

advanced image processing systems in different applications can be developed and new techniques in the image 

processing systems can be introduced. 

In [109], the widespread popularity of unmanned aerial vehicles enables an immense amount of power lines 

inspection data to be collected. How to employ massive inspection data especially the visible images to maintain the 

reliability, safety, and sustainability of power transmission is a pressing issue. To date, substantial works have been 

conducted on the analysis of power lines inspection data. With the aim of providing a comprehensive overview for 

researchers who are interested in developing a deep-learning-based analysis system for power lines inspection data, this 

paper conducts a thorough review of the current literature and identifies the challenges for future research. Following 

the typical procedure of inspection data analysis, we categorize current works in this area into component detection and 

defect detection diagnosis. For each aspect, the techniques and methodologies adopted in the literature are summarized. 

Some valuable information is also included such as data description and method performance. Further, an in-depth 

discussion of existing deep-learning-related analysis methods in power lines inspection is proposed. Finally, we 

conclude the paper with several research trends for the future of this area, such as data quality problems, small object 

detection, embedded application, and evaluation baseline. 

In [110], the material extrusion (ME) process is one of the most widely used 3D printing processes, especially 

considering its use of inexpensive materials. However, the error known as the “spaghetti-shape error,” related to filament 

tangling, is a common problem associated with the ME process. Once occurring, this issue, which consumes both time 

and materials, requires a restart of the entire process. In order to prevent this, the user must constantly monitor the 

process. In this research, a failure detection method which uses a webcam and deep learning is developed for the ME 

process. The webcam captures images and then analyzes them by machine learning based on a convolutional neural 

network (CNN), showing outstanding performance in both image classification and the recognition of objects. Sample 

images were trained based on a modified Visual Geometry Group Network (VGGNet) model and the trained model was 

evaluated, resulting in 97% accuracy. The pre-trained model was tested on a 3D printer monitoring system for its ability 

to recognize the “spaghetti-shape-error” and was able to detect 96% of abnormal deposition processes. The proposed 

method can analyze the ME process in real-time and inform the user or halts the process when abnormal printing is 

detected. 

In [111], mass spectrometry imaging (MSI) and histology are complementary analytical tools. Integration of the two 

imaging modalities can enhance the spatial resolution of the MSI beyond its experimental limits. Patch-based super-

resolution (PBSR) is a method where high spatial resolution features from one image modality guide the reconstruction 

of a low-resolution image from a second modality. The principle of PBSR lies in image redundancy and aims at finding 

similar pixels in the neighborhood of a central pixel that is then used to guide reconstruction of the central pixel. In this 

work, we employed PBSR to increase the resolution of MSI. We validated the proposed pipeline by using a phantom 

image (micro-dissected logo within a tissue) and mouse cerebellum samples. We compared the performance of the 

PBSR with other well-known methods: linear interpolation (LI) and image fusion (IF). Quantitative and qualitative 

assessment showed advantage over the former and comparability with the latter. Furthermore, we demonstrated the 

potential applicability of PBSR in a clinical setting by accurately integrating structural (i.e., histological) and molecular 

(i.e., MSI) information from a case study of a dog liver. 
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In [112], machine fault diagnosis and remaining service life prognosis provide the basis for condition-based 

maintenance and are key to operational reliability. Accurate assessment of machine health requires effective analysis of 

vibration data, which is typically performed by examining the change in frequency components. One limitation 

associated with these methods is the empirical knowledge required for fault feature selection. This paper presents an 

image processing approach to automatically extract features from vibration signals, based on visual word representation. 

Specifically, a time-frequency image of vibration signal is obtained through wavelet transform, which is then used to 

extract “visual word” features for recognizing fault-related patterns. The extracted features are subsequently fed into a 

sparse representation-based classifier for classification. Evaluation using experimental bearing data confirmed the 

effectiveness of the developed method with a classification accuracy of 99.7%. 

In [113], the advent of the 3G communications era has led to a trend of digital media information being transmitted 

through wireless networks. The variability and high error rate of the wireless communications environment often cause 

loss of information. Images transmitted in a noisy channel environment tend to be obstructed by unexpected information, 

which decreases the quality of the image. Therefore, it is an intensive research topic to repair error images and increase 

their post-transmission quality. Image authentication technique is a mechanism to deal with the malicious image 

modification problem. However, it can also be used to solve the problem of error image transmission. In this paper, a 

new image authentication technique is proposed to embed the image block directions as the verification information. At 

the receiver, the information is then extracted to detect transmission error and incorporated with a newly interleaving 

prediction method to repair the erroneous regions of the image. In this way, it can not only repair the image, but also 

detect the image blocks that are erroneous, thus enhancing the post-transmission quality of the image. 

In [114], image processing has two main branches: image enhancement and machine vision. Improving images 

includes methods such as using a blur filter and increasing contrast to improve the visual quality of images and ensure 

that they are displayed correctly in the target environment, such as a printer or computer monitor. While machine vision 

deals with methods that can be used to understand the meaning and content of images to be used in tasks such as robotics 

and image axis. 

In [115], robots first detect the number of banana bunches when making judgements on sterile bud removal and 

estimating weight for harvest in the field environment. Banana bunches are complex in shape, arranged in a nonlinear 

helical curve along the stalk, and have different growth states in different periods, with bunches widely spaced in the 

early period and densely arranged in the harvest period. Deep Learning nor classical image-processing algorithms alone 

can detect and count bunches in both periods. Therefore, these algorithms were combined to calculate the number of 

bunches in the two periods. For counting bunches in the debudding period, the convolutional neural network Deeplab 

V3 + model and classic image-processing algorithm were combined to finely segment bunches and calculate bunch 

numbers, providing intelligent decision-making for judgment on the timing for debudding. To count bunches during 

harvest, based on deep learning to identify the overall banana fruit cluster, the edge detection algorithm was employed 

to extract the centroid points of fruit fingers, and the clustering algorithm was used to determine the optimal number of 

bunches on the visual detection surface. An estimation model for the total number of bunches, including hidden ones, 

was created based on their helical curve arrangement. The results indicated a target segmentation MIoU of 0.878 during 

the debudding period, a mean pixel precision of 0.936, and a final bunch detection accuracy rate of 86%. Bunch detection 

was highly challenging during the harvest period, with a detection accuracy rate of 76% and a final overall bunch 

counting accuracy rate of 93.2%. Software was designed to estimate banana fruit weight during the harvest period. This 

research method provided a theoretical basis and experimental data support for automatic sterile bud removal and weight 

estimation for bananas.  

In [116], leaf spot disease, which causes 10 −  50% loss in sugar beet yield, causes great damage on the leaves. This 

disease physiologically appears as individual circular spots on the sugar beet leaves and over time spreads to the entire 

leaf, resulting in complete death of the leaf. Therefore, in our study, Faster R-CNN, SSD, VGG16, Yolov4 deep learning 

models were used directly, and Yolov4 deep learning model with image processing was used in a hybrid way for 

automatic determination of leaf spot disease on sugar beet and classification of severity. The proposed hybrid method 

for the diagnosis of diseases and identifying the severity were trained and tested using 1040 images, and the classification 

accuracy rate of the most successful method was found to be 96.47%. The proposed hybrid approach showed that the 

combined use of image processing and deep learning models yield more successful results than the analysis made using 

only deep learning models. In this way, both the time spent for the diagnosis of leaf spot disease on sugar beet will be 

reduced and human error will be eliminated, and the relevant pesticides will be sprayed to the plant at the right time. 

In [117], the authors present for the first time a method for detecting label errors in image datasets with semantic 

segmentation, i.e., pixel-wise class labels. Annotation acquisition for semantic segmentation datasets is time-consuming 

and requires plenty of human labor. In particular, review processes are time consuming and label errors can easily be 

overlooked by humans. The consequences are biased benchmarks and in extreme cases also performance degradation 

of deep neural networks (DNNs) trained on such datasets. DNNs for semantic segmentation yield pixel-wise predictions, 
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which makes detection of label errors via uncertainty quantification a complex task. Uncertainty is particularly 

pronounced at the transitions between connected components of the prediction. By lifting the consideration of 

uncertainty to the level of predicted components, we enable the usage of DNNs together with component-level 

uncertainty quantification for the detection of label errors. We present a principled approach to benchmark the task of 

label error detection by dropping labels from the Cityscapes dataset as well as from a dataset extracted from the CARLA 

driving simulator, where in the latter case we have the labels under control. Our experiments show that our approach is 

able to detect the vast majority of label errors while controlling the number of false label error detections. Furthermore, 

we apply our method to semantic segmentation datasets frequently used by the computer vision community and present 

a collection of label errors along with sample statistics [118] . 

The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques 

exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher 

performance. An efficient Real-Time Multi Variant Deep Learning Model (RMVDM) is presented in this article to 

handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the 

defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based 

Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization 

Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model 

where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been 

designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different 

operations, and the features extracted passed through the model trained. The output layer returns a number of DCS 

values using which the method identifies the class of defect and localizes the defect in the image. Further, the method 

uses the Higher- Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces 

efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity. 

 

6.  CHALLENGES 

High precision, high positioning, fast detection, and small object through examination are the most challenges in the 

application of quality detection [119]- [85] (See Table 4).  

 

7.  CONCLUSION 

Industrial product quality is a significant portion of product production. The research on defect detection technology 

has excellent functional significance to guarantee product quality. This article supplies a complete outline of the research 

status of product defect detection technology in complicated industrial processes. We approximated and studied 

traditional defect detection and deep learning techniques and completely outlined the empirical results of defect 

detection methods. Integrated with the actual application conditions and the result of artificial intelligence technology, 

the defect detection tools examined and studied. Via analysis, we discovered that 3D object detection, high precision, 

high positioning, and rapid detection are the challenges of industrial research. We suggested that implanted sensor 

equipment, online product defect detection, 3D defect detection, etc. are the evolution directions in the field of industrial 

product defect detection. We consider that the study will aid industrial businesses and researchers comprehend the 

research progress of product defect detection technology in the field of deep learning and traditional defect detection. 

This article provides a review of defect detection methods represented in more than 100 scientific assistances. A 

substantial part of works is based on statistical statements and employs statistical or filter-based procedures. The Gabor 

filter is one of the utilized techniques. Nevertheless, most of the investigations offer detailed restrictions, being heavily 

conditional on the pattern, material and texture. Cracking the segmentation and windowing problems of coinciding 

objects is a ponderous topic closed by some investigators. Images having color features reproduce the complexity of 

these problems. 

Neural networks are a strong approach utilized in artificial image processing. These almost decode every 

classification problem. Nonetheless, the major disadvantage is the needed large amount of training samples. In artificial 

image processing, this issue effortlessly cracked with labeled datasets. Regardless, in other fields like robotics, it is a 

challenging problem. Enhancing the training efficiency and intersection qualification of neural networks is a continuous 

research area. It is noted that large neural networks employed for deep learning need considerable computational 

resources, which direct to an inevitable parallelization of the challenges [120]. 

In artificial image processing, various textural databases are known for testing. Although some investigations do not 

supply sufficient results due to the scarcity of testing samples and regular inconsistency of such databases, there is a 

tremendous demand for designing general defect detection techniques able to deal with any type of defect on every kind 

of material and able to show a general and dedicated defect description system. To this purpose, deep learning is the 

emerging field that decodes the generality need and hyper-complexity of problems without drastically increasing 

computational costs. 
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Suggested method 
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Advantages / Result 
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Liu et al. 

2022 

 

HTR algorithm efficiently and 

accurately recognizes cage 

structures. 

Resources, gas 

storage, transport, 

separation, water 
desalination, 

refrigeration. 

HTR algorithm efficiently identifies complete cages, 
hydrates in large-scale systems, and unique 

topological isomers of cages. Validated for clathrate 

hydrate identification under mechanical loads. 

[102] 

Kheradmandi 

and 

Mehranfar 

2022 

Research analyses image 
segmentation algorithms for 

automated distress detection in 

pavement images under various 

conditions. 

Image segmentation, 

irregular dark lines 

cracks 

Research analyses image segmentation algorithms for 

automated distress detection in pavement images 

under various conditions. 

[103] 

Hazzan and 

Pacella 

2022 

SEM images developed for crack 

identification method. 

SEM images aid in 

crack identification 

and quantification. 

Study uses MATLAB to identify and quantify cracks 

in SEM tungsten carbide microstructure, segmenting 

regions and extracting geometry information. 

SEM crack segmentation accuracy over 95% achieved 

using various laser processing parameters. 

[104] 

Yadhunath et 

al. 

2022 

Computer vision techniques Surface crack 

The paper presents two approaches for surface crack 
inspection systems: digital image processing and 

deep learning. 

[105] 

Aravind et al. 

2021 

Work uses image processing and 

machine learning algorithms to 

identify cracks and validate 

techniques. 

Determine the 

confusion matrix, 

accuracy, precision, 

recall scores 

Experimental images were processed and failure 

pattern recognition in Python using six machine 
learning classifiers. Support vector classifiers 

achieved 100% accuracy in identifying failure 

patterns, outperforming the other classifiers. 

[106] 

Munawar et 

al. 

2021 

This paper provides a review of 

image-based crack detection 
techniques which implement image 

processing and/or machine learning 

Crack detection, 

possible defects 

Image processing and machine learning techniques 

analyze infrastructure parts for defects, improving 

performance and crack detection robustness. 

This paper provides a review of image-based crack 

detection techniques which implement image 

processing and/or machine learning. A total of 30 
research articles have been collected for the review 

which is published in top tier journals and 

conferences in the past decade. A comprehensive 
analysis and comparison of these methods are 

performed to highlight the most promising automated 

approaches for crack detection. 

[107] 

Safaei et al. 

2021 

New method detects cracks in 2-D 
pavement images using adapted 

weighted neighborhood pixels 

segmentation algorithm and 
Gaussian cumulative density 

function as adaptive threshold 

Detect cracks 

The proposed algorithm, tested on 300 images, is time 

and cost-efficient, taking less than 3.15 seconds per 
320x480 pixels image. It is ideal for county-level 

pavement maintenance projects requiring cost-

effective crack detection systems. 

[108] 

Klára 

Ščupáková, et 

al. 

Patch-based super-resolution 
(PBSR) enhances the spatial 

resolution of MSI by guiding high-

resolution features from one 

Linear interpolation 

(LI) 

image fusion 

(IF) 

 

This study uses PBSR to improve MSI resolution, 
validated using phantom images and mouse 

cerebellum samples. PBSR outperformed linear 

interpolation and image fusion, showing advantages 
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2019 modality to reconstruct low-

resolution images. 

in quantitative and qualitative assessments. It has 

potential clinical applicability in integrating structural 

and molecular information. 

[109] 

Zhang et al. 

2018 

This paper presents an image-

processing approach for extracting 

features from vibration signals 
using visual word representation. It 

uses PBSR to increase MSI 

resolution and validates its 
performance using phantom images 

and mouse cerebellum samples.  

Machine fault 

diagnosis, 

remaining service life 

prognosis 

This paper presents an image processing method for 

automatically extracting features from vibration 
signals using visual word representation. The method 

uses wavelet transform to recognize fault-related 

patterns and uses a sparse representation-based 

classifier for classification accuracy. 

[110] 

Kuo-Lung 

Hung 

2017 

New image authentication 
technique embeds image block 

directions for verification. 

Variability, error 

image transmission, 

detect transmission 

error 

The image authentication technique addresses 

malicious image modification and error transmission 

issues. 

This paper proposes a new image authentication 
technique embedding image block directions for 

verification, extracting information to detect 

transmission errors, and incorporating an interleaving 
prediction method to repair erroneous regions, 

improving image quality post-transmission. 

[111] 

Liu et al. 

2016 

Review of literature on component 
detection and defect detection, 

identifying challenges for future 

research. 

Maintain the 
reliability, safety, and 

sustainability of power 

transmission 

This paper summarizes literature techniques and 

methodologies, including data description and 

method performance. It reviews current works in 

component detection and defect detection diagnosis, 

identifying challenges for future research. 

Discusses deep-learning analysis methods for power 

lines inspection, identifies future research trends, and 

discusses data quality issues. 

[112] 

Meng et al. 

2016 

Research develops webcam-based 

failure detection method for ME 

process. 

Spaghetti-shape error, 

abnormal printing is 

detection 

Webcam uses CNN for image classification and 

object recognition. 

The trained image model achieved 97% accuracy and 

was tested on a 3D printer monitoring system to 
detect "spaghetti-shape-error" and 96% abnormal 

deposition processes. The method analyses ME 

processes in real-time and informs users or halts 

them. 

[113] 

Kosti and 

Vasovi 

2015 

Recent advancements in image 

processing systems reviewed and 

analyzed for future research. 

Review Articles 

Recent advancements in image processing systems 

reviewed and analyzed for future research. 

Advanced image processing systems developed; new 

techniques introduced for various applications. 

[114] 

Lukac, 

Rastislav and 

Karl Martin 

2014 

Machine vision 

Image enhancement, 

machine vision. 

Improving images 

Image processing consists of two branches: image 

enhancement and machine vision. Enhancing images 
involves using blur filters and increasing contrast to 

enhance visual quality and display in the target 

environment. Machine vision focuses on 
understanding image meaning for tasks like robotics 

and image axis. 

[115] 

Wu et al. 

2023 

Deep Learning 

Bunch detection, 

target segmentation, 

accuracy rate 

These algorithms combined to calculate the number of 
bunches in the two periods. The convolutional neural 

network Deeplab V3 + model and classic image-

processing algorithm. The results indicated a target 
segmentation MIoU of 0.878 during the debudding 

period, a mean pixel precision of 0.936, and a final 

bunch detection accuracy rate of 86%. Bunch 
detection was highly challenging during the harvest 

period, with a detection accuracy rate of 76% and a 

final overall bunch counting accuracy rate of 93.2%. 
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[116] 

Adem et al. 

2023 

Faster R-CNN, SSD, VGG16, 

Yolov4 deep learning models 
Accuracy rate 

Leaf spot disease appears as individual circular spots 

on the sugar beet leaves and over time spreads to the 
entire leaf, resulting in complete death of the leaf. 

Faster R-CNN, SSD, VGG16, Yolov4 deep learning 

models were used directly, and Yolov4 deep learning 
model with image processing was used in a hybrid 

way for automatic determination of leaf spot disease 

on sugar beet and classification of severity. The 
proposed hybrid method for the diagnosis of diseases 

and identifying the severity was trained and tested 

using 1040 images, and the classification accuracy 

rate of the most successful method was found to be 

96.47%. 

[117] 

Rottmann et 

al. 

2023 

deep neural networks (DNNs) Accuracy rate 

Annotation acquisition for semantic segmentation 

datasets is time-consuming and requires plenty of 
human labor. In particular, review processes are 

humans can easily overlook time consuming and 

label errors. The consequences are biased 
benchmarks and in extreme cases also performance 

degradation of deep neural networks (DNNs) trained 
on such datasets. DNNs for semantic segmentation 

yield pixel-wise predictions, which makes the 

detection of label errors via uncertainty quantification 

a complex task. 

[118] 

Prabhakaran 

et al. 

2023 

Real-Time Multi Variant Deep 
Learning Model (RMVDM), Gray 

Scale Quantization Algorithm 

(GSQA), Multi Variant Deep 

learning 

Accuracy rate 

The method considers different defects like a 

spotlight, crack, dust, and micro-cracks to detect the 

defects as well as localizes the defects. The image 

data set given has been preprocessed by applying the 

Region-Based Histogram Approximation (RHA) 

algorithm. The preprocessed images are applied with 
Gray Scale Quantization Algorithm (GSQA) to 

extract the features. Extracted features are trained 

with a Multi Variant Deep learning model where the 
model trained with a number of layers belongs to 

different classes of neurons. Each class neuron has 

been designed to measure Defect Class Support 
(DCS). Further, the method uses the Higher- Order 

Texture Localization (HOTL) technique in localizing 

the defect. The proposed model produces efficient 
results with around 97% in defect detection and 

localization with higher accuracy and less time 

complexity. 

[46] 

Hor et al. 

2015 

Combining color and texture 

features 

High efficiency of the 

automatic method of 

recovery 

Recovery systems aim to provide relevant information 

to users, with images being crucial for conveying 

significant information. 

 


