Journal of Industrial Strategic Management

An Integration of System Dynamics Modelling Approach into the Balanced Scorecard for a Case Study

Maryam Ebrahimi^a, Amir Daneshvar^{*}^b

a Independent Researcher, Germany

b Department of Information Technology Management, Electronic Branch, Islamic Azad University, Tehran, Iran

CHRONICLE	Abstract
A T. T	Since work on dynamic aspects of balanced scorecards is just in an early state and
Article mistory Received: 10/11/2020 Received in revised: 26/01/2021	a company may gain great insight from simulation results, this paper seeks to
	develop a dynamic model based on the financial perspective of a balanced
	scorecard (BSC) in a case study on the basis of a telecommunication company. The
Accepted. 10/02/2021	value of this paper, at first is related to the application of system dynamics (SD) in
	a BSC which overcome the limitations of BSC. At second, the paper provides
Keywords:	causal loop diagram, dynamic modeling, simulation results, and validation results
Financial Perspective Service-based Firms Strategic Planning Simulation	in the period $\gamma \cdot \gamma \circ$ to $\gamma \cdot \gamma \cdot$ for the financial aspect to present suitable scenarios
	such as creation of new infrastructure, increasing the quality of services,
	diversification of product portfolio, and value-added services. At third, the paper
~~~~~	is based on a case study of Tehran Telecommunication Company-Data Network
	which is a service-based company. Thus, it provides knowledge and information
	for academician and practitioners of BSC and SD to implement SD based on a BSC
	in companies, especially service-based firms.
O All rights reserved	

© All rights reserved



#### Introduction

A combination of strategy and strategy formulation with management accounting is the most popular fields in the area of business management both scientifically and practically. Typically, the usual method of strategic planning has been that each business operating area based on financial measures defines its plan. Now, managers with the help of balanced scorecard (BSC) have the opportunity to focus their efforts on its specified common language and objective. The purpose of the BSC is to implement and explain the company's strategy through more operational terms. In a competitive global economy, financial development actions may tell only part of a company's story. Therefore, the financial accounting model should be expanded to include the assessment of intangible and intangible assets of the company that satisfy customers and employees (Nielsen and Nielsen,  $\forall \cdot \cdot \wedge$ ).

In studies that have been done on BSC so far, there are two different assumptions that are as follows: 1) as a measurement instrument order improve in to organizational performance,  $\gamma$ ) as a tool for strategic management that organizations remove obstacles use to in the implementation of organizational strategy like translating organizational strategy into goals (Ebrahimi et al.,  $\gamma \cdot \gamma \gamma$ ). In other words. BSC has evolved from а performance measurement system into the strategy map approach. The viable and continuous improvement of an organization depends on the organization's ability to evaluate and measure the performance of kev organizational processes. Organizations have recognized the importance of stable and consistent assessment, and therefore have used varied performance evaluation systems over the years. Additionally, it is required to review and monitor the performance of the

organization's processes and their subsequent alignment with the organization's strategic goals. Thus, the organization needs an efficient model that focuses on strategic management, guides all elements of the organization in four perspectives: financial, customer, internal processes, and learning and growth, aligned vision. with the organization's and examines the organization's performance in the present and future.

In the current era, organizations face a host of sophisticated and dynamic issues. Dynamic characteristic means changing over time, and related issues require continuous and dynamic management actions. In the area of strategic planning, dynamic issues are of a continuous and recurring nature. In other words, in these cases, the results of management actions are monitored and evaluated. and new measures are taken that will result in new results and actions and in this way, closed loops are formed. Feedback issues are the result of complex interactions between system variables. Since a BSC is an organizational excellence tool, it is essential to focus on this model to eliminate the degeneration of the organization and thus can lead to the organization's sustainable success. Besides, on account of the high status of strategy and decision making in the process of progress and organizational excellence, compliance of a BSC with the concepts of a system dynamics (SD) becomes significant.

This research focuses on dynamic implementation of a BSC model in a case study based on a telecommunication company. Strictly speaking, the main aim of the study is to develop a dynamic BSC and to demonstrate the use of SD as a method to advocate feedback loops rather than unidirectional causality, delays



between cause and effects, provide rigorous by quantification of validation the qualitative insights, propose strategies and present their links to operational processes and performance indicators, define endogenous and exogenous variables in the developed model for the purpose of presenting various scenarios/strategies to improve system's performance

The value of this paper, at first is related to the application of SD in a BSC which overcome the limitations of BSC such as ignoring time dimension and causal loop in a BSC, lack of integration between strategic and operational levels, and wider view to consider competitors and supplier contributions. At second, the paper provides information and scenarios that are helpful for the company to develop strategic management systems based on architecture and system both BSC dynamics methodology (SDM). At third, the paper is based on a case study of a telecommunication company as a servicebased organization. Thus, it provides information knowledge and for academician and practitioners of BSC and SD to implement SD based on a BSC in companies, especially service oriented firms.

By the use of SD a dynamic model is developed and structured in accordance with financial perspective of the BSC. To gather necessary information, all key performance indicators of the case study were mapped via interviews and internal documents. The dynamic model was meant to give a better understanding of the dynamics complexity and of the organization and support strategic decision making. The developed model is representing a boundary of the system, variables including stock, rate, and auxiliary. After defining variables, their

relations are formulation by mathematical equations by using Vensim. It therefore enables observing the behavior of each variable and the whole system in current situation, predicting the behavior of the variables over time, and testing the model by several methods. Finally, it is possible to have analysis and provide insights of applicable strategies to improve future performance of the system.

## **Theoretical Background**

As the need to improve performance management in organizations grows, a balanced scorecard (BSC) can be more recognized as a valuable tool to meet the need for improvement and change, particularly for companies that are in a highly competitive or monopolistic market (Chan,  $\gamma \cdot \cdot \epsilon$ ). The four aspects of a BSC are as follows (Ebrahimi et al.,  $\gamma \cdot \gamma \gamma$ ):

- A) **Financial**: These indicators are very important in most organizations. Such organizations strive to increase revenue, reduce costs and risks, make better use of real estate, and increase productivity.
- B) **Customer**: Managers need to be aware of this - can the organization meet the needs of its customers. To do this, the entire value transferred to the customer must be determined and measured. The goals of this aspect are: customer loyalty, adding value, attracting customers, improving quality and increasing productivity.
- C) **Internal processes**: Measuring the degree of value generation and how processes are related can help managers understand the effects. Therefore, it is essential to identify and review the processes that are required



to achieve the goals of customers, shareholders, etc.

D) Learning and growth: An organization can only grow and innovate if it can develop its skills and leadership, learn from mistakes of its own and other organizations, and develop new methods. Measuring the performance and development of skills and knowledge of staff is one of the goals of this aspect

Creating BSC makes organizations to merge strategic planning and market and customer processes together. Users of BSC select all of four perspectives and determine the activities of each goal as well. So, using the BSC can link market and customer perspective and strategic objectives together.

Economic and social systems are complex as they consist of many different parts that are potentially heterogeneous and their mechanisms may interfere with each other and interaction effects. System dynamics (SD) is as a methodology of modeling and simulation. It has been applied to various types of systems that change over time, particularly to socioeconomic systems. In the case of issues related to business, it is common to be used to present strategic issues in the wide horizon. The complex dynamic systems are featured by feedback accumulation, delays, loops, and nonlinearities. Application of SD makes an enhancement of knowledge about structure and behavior of such systems and to give the ability to design more robust systems. SD is recognized as a learning tool and engage with mental models which hold the most important information about a system and are the foundation of decision making in SD (Ebrahimi, ۲۰۱٦). SD can be used for the process of policy making via three phases: analysis, planning, and control (Lyneis,  $7 \cdot \cdot 9$ ).

This paper applied a system dynamics modelling (SDM) approach in order to overcome some limitations of BSC, as proposed by Kaplan and Norton  $(7 \cdot \cdot )$ which has some similarities to the classic approach. In the literature, there are few studies that combine BSC and dynamic simulation approach. However, the system dynamics method has already proven to be a very useful method in other similar fields such as planning, inventory control, and forecasts. Nielsen and Nielsen  $(\uparrow \cdot \cdot \land)$  used SDM for a BSC. They showed that a change in at least one of the basic variables may have a major impact on other indicators which is impossible to predict without using a dynamic model. Nielsen and Nielsen  $(\gamma \cdot \gamma \gamma)$  showed how an SDM approach can be integrated into the BSC. Nielsen and Nielsen  $(\gamma, \gamma_{\circ})$  tried to improve the conceptual as well as the methodological aspects of BSC as a quantitative model by combining elements from traditional BSC thinking with the systems thinking with the use of SD.

an important tool for strategic As performance management, the BSC introduces three non-financial aspects of evaluation indicators that compensate for traditional performance the lack of evaluation emphasizing just on financial indicators. On the basis of a strategic perspective, this can help managers focus on the key elements that lead to success. The main idea of the BSC is to balance a set of indicators such as short-term and longterm indicators, financial and non-financial indicators, leading and lagging indicators, endogenous and exogenous indicators. Using a strategy map, a BSC can describe the causality of indicators from different angles. After using the strategy map and BSC, the focal point of performance



management changes from short-term goals to strategic goals and from the reflection of results to real-time analysis of the problem. However, there are theoretically some drawbacks to a BSC (Zhang,  $7 \cdot 17$ ).

Akkermans and Oorschot  $(7 \cdot \cdot 7)$  discussed five limitations of BSC. BSCs focus on one-way causality, are unable to detect delays between actions and their impact on performance, do not have the ability to validate, and do not integrate inadequate strategy with operational actions. And internal prejudices. suffer from To overcome these limitations, they propose a SD approach to BSC development. Zhang (7.17) combined the BSC and SD for performance management. Akkermans and Oorschot  $(\uparrow \cdot \cdot \circ)$  described a case study in which SDM and simulation was used in combination with the BSC. Barnabè  $(7 \cdot 11)$ focused on a case study related to a servicebased business and discussed the maps, the mathematical model and the BSC developed according to SDM principles. Sales et al.  $(7 \cdot 1^{\circ})$  aimed the development of an information technology balanced scorecard (ITBSC) based on SD approach.

## **Case Study**

Telecommunications provide communication via remote transmission of information. Early means of communicating over a distance included visual signals, such as beacons, smoke signals, semaphore telegraphs, signal flags, other examples of pre-modern longdistance communication included audio messages

such as coded drumbeats, lung-blown horns, and loud whistles. In modern times, telecommunications typically involve using electronic devices (such as the telegraph, telephone and teletype), radio, microwave communications, satellites, and internet. In recent decades, telecommunication has been recognized as an organization for socio-economic progress in the world. At the same time, increasing demand for telecommunications services has greatly contributed to the growth of this industry, so that the number of phone service subscribers in worldwide are over billion and in every minute thousands of new subscribers are added. Recently, phone services are essential part of World Trade Organization and social life.

Iran's telecommunication At present, industry is experiencing profound transformation due technological to changes. Markets that were vertical having a distinct advantage over their competitors in the past led to new challenges, players, and markets with investments mainly from the private sector. Telecommunication Company in Tehran has been encountered with variety of problems a after the privatization efforts. Now, there are several telecommunications operators in the country. In the past, one of the competitive tool for expanding customers have been fighting over the price, but today more emphasis is on the services provided to the customer and customer needs become the central focus for service provider's activities. An industry with higher growth faces with more market unpredictability. These issues make telecommunications organizations to evaluate their performance to see if they are in the track of their strategic goals or not.

As it is shown in figure  $\$ , due to the end of monopoly and the entry of new competitors into the ADSL market in recent years, Telecommunication Company has faced with a serious threat to lose its market share gradually. At the end of  $(\cdot, \cdot)$ , Telecommunication Company had approximately  $\circ \cdot,$  percent of the ADSL



market and the remaining belonged to other competitors in the market. Since Telecommunication Company has gained higher market share than the other competitors, it has no plan to promote sales and service quality for the future. Therefore, other competitors will seize the potential market share in future. In addition, majority the of the country's telecommunications system that belongs to the Telecommunications Company is not entirely consistent with the world's updated innovations. ADSL still remains the most

popular choice for the exchange of information and communication, while most recently value-added services with high-speed internet connections are being offered by competitors. This causes a reducing pattern of future demand for Telecommunication Company.

In figure `, the status of data in the past ° years is considered and it is the basis of discussion of modeling to improve and achieve the goals.



Figure 1. Comparison of the percentage of market share

Figure  $\uparrow$  shows the trend of assigned ports in the ADSL Market. As it can be seen clearly from  $\uparrow \cdot \uparrow \circ$  to  $\uparrow \cdot \uparrow \uparrow$  there is a sustainable decline in assigned ports of the Telecommunication Company.







Figure ^{*}: Comparison of ADSL assigned ports

#### Strategic Objectives of the BSC

۲.

As mentioned in the previous section, BSC includes four perspectives including financial, market and customers, internal business processes, and learning and growth that strategic objectives of the organization is expressed regarding these four perspectives. The goal of any organization of planning or strategic planning is to express strategic goals briefly and transparently and document operations required by the organization to achieve its goals. In the Telecommunication Company, the basis for defining objectives is the Telecoms Operational Program in Y. 10. The objectives of this program were formulated through library studies and interviews with telecommunication experts in Tehran and by referring to standard objectives and indicators of the International Telecommunication Union. As it is shown in figure r, strategic objectives of four perspectives were expressed separately.





Figure ". Strategic objectives based on four perspectives of BSC

# Strategic Objectives and Indicators of the Financial Perspective

۲١

The main strategic objective of the financial perspective is increased profitability which is affected by four other objectives. In this paper, strategic objectives on the basis of financial perspective of BSC are considered to be development and guarantee of income opportunities  $(F^{1})$ , and growth of profit of

the company at the possible highest level  $(F^{\gamma})$ .



#### Maryam Ebrahimi, Amir Daneshvar

An indicator is a measurable value that expresses how a goal is realized. Indicators were characterized by levels of organization and the different nature of tasks of each level. In this research, indicators related to each objective of financial perspective have been extracted based on the Operational Plan of the Tehran Telecommunication Company in Y. 10. It is worth noting that the indicators of this program have been developed through library studies, interviews with experts, and by referring to standard indicators of the International Telecommunication Union. In BSC, the strategic objectives of each perspective are linked to key performance indicators.

In the table ', indicators related to the strategic objectives of the financial perspective have been expressed.

		Wight Indexes
Strategic objectives	Indicators	
	Growth Percentage of Household Data Revenue	۲.
Development and ensuring	Growth Percentage of Business Data Revenue	٣.
revenue opportunities (F1)	Growth Percentage of Household Data ARPU [†]	۲.
	Growth Percentage of Business Data ARPU	۳.
	profit margin	۳.
growth of profit of the	Net profit	٣.
company at the possible highest level (F ^Y )	Operating Profit	٤ •

#### Table \. Financial strategic objectives and indicators

# Integrating of System Dynamics into the Financial Perspective

Average revenue per user[†]



According to the purpose of the study, the goal of this model is financial analysis of the ADSL market. The key variables in relation to this model are number of users, revenues, and expenses.

#### Dynamic Hypothesis and Causal Loop Diagram

Dynamic hypothesis presents a structure that might be capable of generating real behavior and is shaped based on cause and effect relationships among the rate and stock variables. Based on dynamic hypothesis, a causal loop diagram (CLD) can be presented which visualizes the way variables in a system are interrelated.

As shown in the causal-loop diagram of a financial perspective, figure  $\xi$ , the growth of increase rate causes an increase in profitability of the company which is a stock variable in the dynamic model. On the other hand, decrease rate of profit makes a decline in the final profit. Increase in profitability leads to a growth in the profit decrease rate, which causes a decrease in the final profit. Increase in the final profit. Increase in the final profit increase rate, which causes a decrease rate, which he profit increase rate, which leads to an increase in the final profit.



Figure 4. Causal loop diagram of financial perspective

#### **Dynamic Modeling**

In this model, there are variables such as data revenue, revenue from value added services, commercial data revenue and home-based ADSL service revenue which considered having an increasing effect on the final profit. Data production cost including costs such as cost of staff, cost of equipment, and etc. cause reduction in the final profit. The time horizon is a  $\circ$ -year period for this model which is considered to simulate which begins from  $\gamma \cdot \gamma \circ$  and ends in planning horizon of the case study in  $\gamma \cdot \gamma \cdot$ .

۲able ۲.	. Variables of	financial	perspective	(Mostafavi,	۲	• '	١٩٤	a)
----------	----------------	-----------	-------------	-------------	---	-----	-----	----

Type of dynamic variable	Description	Variable
Stock/level	Profitability: shows the profitability of an organization each year.	Profit
Inflow rate	Increase Rate of Profit which increases the level of the profitability.	Increase Profit
Auxiliary	Data revenue variable: Income from Internet service	Data Revenue



	Household ADSL service revenue: Income derived from home-based Internet service, which itself has	
Auxiliary	information that varies over time.	Home ADSL Revenue
Auxiliary	Commercial ADSL service revenue: Income derived from commercial Internet service, which itself has information that varies over time.	Business Data Revenue
Auxiliary	Average annual revenue from home-based ADSL services: The average annual revenue for the subscription service, which is received from the customer	Yearly ADSL ARPU Accounting
Auxiliary	Average annual earnings from commercial ADSL services: The average annual revenue for a subscription service that is received from business customers	Yearly Data ARPU Accounting
Auxiliary	The annual revenue resulting from the surplus traffic of households ADSL service	Revenue Of ADSL Traffic
Auxiliary	The annual revenue resulting from the surplus traffic of commercial ADSL service	Revenue Of Data Traffic
Auxiliary	The revenue resulting from the sale of the modem for home-based ADSL services and installation of the modem	Revenue Of ADSL Modem Sales And Configuration
Auxiliary	The revenue variable resulting from the sale of the modem for the commercial ADSL services and installation of the modem	Revenue Of Data Modem Sales And Configuration
Auxiliary	Average revenue per annum home-based ADSL service	ADSL ARPU
Auxiliary	Average annual earnings per commercial ADSL service	Data ARPU
Auxiliary	The number of clients of home-based ADSL services annually	Count Of ADSL Customer
Auxiliary	The number of clients of the commercial ADSL service annually	Count Of Data Customer
Auxiliary	The number of modems sold for home-based ADSL services annually	Count ADSL Modem
Auxiliary	The number of modems sold for commercial ADSL per annum	Count Data Modem
Constant	Cost per each Gigabit of fixed surplus traffic	Cost Of Per Traffic
Constant	Cost of each modem and its installation	Average Cost Of Modem Sale and Configuration
Auxiliary	Revenue of value added services of data infrastructure	Value Added Service Revenue
Auxiliary	MPLS revenue	MPLS Revenue
Auxiliary	Intranet revenue	Intranet Revenue
Auxiliary	Urban MPLS	City MPLS
Auxiliary	Intercity MPLS	Between City MPLS
Auxiliary	Business firms	Business Company
Auxiliary	Number of MPLS links	Number Of MPLS
Auxiliary	Average income per urban MPLS link	ARPU City MPLS
Auxiliary	The number of intercity MPLS link	Number Of BCM
Auxiliary	Average income per intercity MPLS link	ARPU BCM
Auxiliary	The number of clients, companies, for intranet service	Number Of Company
Auxiliary	The average income from each company	Average Revenue
Outflow rate	Decrease rate of the profit	Decrease Profit
Auxiliary	The amount owed to the Telecommunication Company by institution and customers	Credits
Auxiliary	The amount owed to the Telecommunication Company in the case of Intranet	Intranet Credits



Auxiliary	Debt rate of commercial firms	BC Rate
Auxiliary	Debt related to data	Data Credit
Auxiliary	Debt rate related to data	DC Rate
Auxiliary	Cost of production per data port	Data Port Production Cost
Auxiliary	Cost per each port	Cost Of Per Port
Auxiliary	Total cost of equipment	All Cost Of Equipment
Auxiliary	The total cost of infrastructure	All Cost Of Infrastructure
Auxiliary	The salary of all employees in the data area	Salary Of All Staff InData
Auxiliary	Total cost of installation and maintenance	All Cost Of Data Maintenance
Auxiliary	Total cost of energy and fuel of data equipment	All Cost Of Data Equipment Energy
Auxiliary	Other costs Including Infrastructure Company Charges, Taxes	Other Cost

Profitability = Total factors increasing profitability – Total factors reducing total (1) Profitability

Increase rate of profit = Income from Data + Income from value added services (^(Y)) Data-Based Earnings = Income from home-based ADSL Service + Income from (^(Y)) Business Data

Earnings Caused by Value Added Services = Intranet Service Income + MPLS (٤) Service Income

Total factors reducing total Profitability = Total Expenses + Total Claims and (°) Liabilities

The cost of each data port = Total Energy Cost + Human Resources Cost per Port + (¹) Rental Costs of Infrastructure + Setup Costs + Equipment Costs + Other Costs



An Integration of System Dynamics Modelling Approach into the Balanced Scorecard for a Case Study Maryam Ebrahimi, Amir Daneshvar



Figure^o. Dynamic model of financial perspective (Mostafavi, ^ү·)⁴a)



#### Results

To present appropriate scenarios, validation testing, and sensitivity analysis of the model are considered. After determining the dynamic model, to ensure its performance credentials there are several tests by Vensim software which is mentioned briefly below.

#### **Behavioral Test**

The purpose of this test is comparing simulation results with real data of key variables to ensure the accuracy of the model behavior. Figures  $\neg$  and  $\lor$  show real information and simulation results of business data revenue, and household data revenue from  $\land \land \circ$  to  $\land \land \lor$  which demonstrate that behaviors of studied variables have been simulated well.

In these figures orange lines represent simulated data of the model and gray lines represent actual information.



Figure 7. The comparison of actual and simulated business data revenue model behavior





Figure ^V. The comparison of actual and simulated home-based data revenue model behavior

#### **Test Period**

Since the accuracy of simulation results might be influenced by the time period, a time period up to  $\gamma \cdot \gamma \cdot$  is considered. Simulation results showed the accuracy of the model in the coming years.

#### **Sensitivity Analysis**

The purpose of sensitivity analysis is to evaluate changes in the values of fixed variables on the final results of the model. Considering this issue, an important factor which is taken into consideration is profitability. This factor is calculated by "Total revenue - Total expenses" (Toman). The role of this factor is highlighted by ADSL market moving towards а competitive market. Figure  $\wedge$  shows the trend of profitability of the case study from  $\gamma \cdot \gamma \circ$  till  $\gamma \cdot \gamma \cdot$ . It is shown that after the

year  $\gamma \cdot \gamma \wedge$ , profitability reduces considerably.

Competition among providers is stronger when there are severe changes in the market while increasing profitability coincides with growing market share and penetration rate for each service provider. Profitability can be influenced by several variables. As the number of service providers in the market increases, the market will become more competitive and increase demand for a service with lower costs. One of the key variables of this research which influences on the profitability of each service provider and finally on market share and its competition factor is the revenue resulted of value-added services for each service provider.

#### Discussion



According to the other perspectives of the BSC, the following scenarios are effective for the trend of profitability.

**Scenario** 1: Assuming just 1.7 improvement in marketing, infrastructure construction, and support quality and service quality to business customers.

**Scenario ***: Assuming only **1**•? improvement in marketing, infrastructure construction and support quality and service quality to household customers.

Scenario ": Assuming only \.% improvement in marketing, infrastructure construction and support quality and service quality to customers of value-added services.

**Scenario t**: Assuming **,** o percent reduction of the unrecoverable cost of both business and home-based services.

**Scenario** •: Assuming to  $\checkmark$  percent increase in experience.

Figure  $\land$  provides a comparison of the amount of profitability from  $\land \land \circ$  to  $\land \land \land$  before and after applying policies.



Figure ^A. The profitability (^Y · ^Y · ^Y · ^Y ) per 'Toman' before and after applying policies

#### Conclusions

Performance management is a continuous and comprehensive function of management that signifies mutual expectations and focuses on improvement in the future. This paper focused on the application of the balanced scorecard (BSC) in the Data Network Service of the Telecommunication Company of Tehran. Telecommunications has entered a new age of development with advanced technology and increased competition with established players. Each perspective of the BSC includes objectives which refer to the major objectives to be achieved. The present study focused on the financial aspect to increase profitability of the company.

This study applied system dynamics methodology (SDM) for the implementation of a BSC model in Tehran



Telecommunication Company – Data Network. The paper provided causal loop diagram and dynamic modeling of financial perspective which were used for the purpose of scenario planning. The results show that despite of the increase in the number of competitors, Telecommunication Company has gained majority of the market. However, it is anticipated that profitability of the company will be decreased after year  $\gamma \cdot \gamma \wedge$  if the company doesn't change its directions. The Telecommunication Company can invest in new infrastructures and influence on the market to maintain its profitability or increase quality of services and valueadded service compared to its competitors. Another scenario is to reduce the demands from the government agencies which increasingly occupy organization resources and has negative effects on the reputation of telecommunications services. The effect of each scenario in short-term causes change in current trends and competing factors in favor of Telecommunication Company. It is recommended for the Telecommunications Company to invest in providing valueadded services for the superiority in the market.

The value of this paper is related to the application of SD in a BSC which overcome the limitations of BSC such as ignoring time dimension and causal loop in a BSC, lack of integration between strategic and operational levels, and wider view to consider competitors and supplier contributions.

#### Acknowledgements

Special thanks to Mr. Esmail Mostafavi who support us through this study.

#### References

Akkermans, H., and Oorschot, K.V.  $({}^{\vee}{\cdot}{}^{\vee})$ . Developing a Balanced Scorecard with System Dynamics. *Proceedings of the*  ${}^{\vee}{\cdot}th$  International Conference of the System Dynamics Society, July  ${}^{\vee}{\wedge}$  - August  ${}^{\vee}{\cdot}$ , at Palermo, Italy.

Akkermans, H., and Oorschot, K.V.  $(\uparrow \cdot \cdot \circ)$ . Relevance Assumed: A Case Study of Balanced Scorecard Development Using System Dynamics. *Journal of the Operational Research Society*,  $\circ \neg (\land)$ ,  $\neg \uparrow \neg 1 \le 1$ .

Barnabè, F.  $(\uparrow \cdot \uparrow \uparrow)$ . A "system dynamicsbased Balanced Scorecard" to support strategic decision making: Insights from a case study. *International Journal of Productivity and Performance Management*,  $\neg \cdot (\circ)$ ,  $\xi \in \neg - \xi \lor \Upsilon$ .

Chan, L.  $({}^{\vee} \cdot \cdot {}^{\varepsilon})$  Performance measurement and adoption of the balanced score card: A survey of the Municipal governments in the USA and Canada, *International Journal of Public Sector Management*  ${}^{\vee}({}^{\circ})$ :  ${}^{\vee} \cdot {}^{\varepsilon} - {}^{\vee} {}^{\vee}$ .

Ebrahimi, M., Hassanzadeh, A., Elahi, S., Ebrahimi. M.  $({}^{\cdot}{}^{\cdot}){}^{\tau}$ ). The relationship between information systems strategic management based on balanced scorecard and information systems performance. *International Journal of Business Administration*,  ${}^{\varepsilon}({}^{\varepsilon})$ ,  ${}^{\tau}{}^{\circ}{}^{-{}^{\varepsilon}}{}^{9}$ .

Ebrahimi, M.  $({}^{\prime}, {}^{\prime}{}^{\prime})$ . Technology scenario planning with system multi methodology: In the Petrochemical Research and Technology Company. In: *Proceeding of*  ${}^{r}{}^{\epsilon}th$  International Conference of the System Dynamics Society, Netherland.

Kaplan, R.S. and, Norton, D.P.  $(\uparrow \cdot \cdot \uparrow)$ . The strategy-focused organization – How balanced scorecard companies thrive in the



*new business environment*, Harvard Business School Press, Boston, MA.

Lyneis, J. M.  $(\uparrow \cdot \cdot \uparrow)$ . Business policy and strategy, system dynamics applications to," in: Meyers, R. A. (Eds.), *Encyclopedia of Complexity and Systems Science* (pp.  $\neg \neg \circ$ - $\neg \wedge \wedge$ ), Springer.

Mostafavi, E. (۲۰۱۹a). Dynamic Modeling of Balanced Scorecard: In a Telecommunications Company. In M. Ebrahimi, *Private Sector Innovations and Technological Growth in the MENA Region*, IGI Global.

Mostafavi, E. (^Y · )⁹b). Balanced Scorecard in a Telecommunications Company: As a Strategy Implementation and Performance Measurement Tool. In M. Ebrahimi, *Private Sector Innovations and Technological Growth in the MENA Region*, IGI Global.

Nielsen, S., and Nielsen, E.H.  $(\uparrow \cdot \cdot \land)$ . System dynamics modelling for a balanced scorecard computing the influence of skills, customers, and work in process on the return on capital employed. *Management Research News*,  $\sqcap (\uparrow)$ ,  $\urcorner \urcorner \urcorner \land \land \land$ .

Nielsen, S., and Nielsen, E.H.  $(\Upsilon \cdot \Upsilon \Upsilon)$ . Transcribing the balanced scorecard into system dynamics: from idea to design. *International Journal of Business and Systems Research*,  $\Upsilon(\Upsilon)$ ,  $\Upsilon \circ \circ \circ \circ$ .

Nielsen, S., and Nielsen, E.H.  $(\uparrow \cdot \uparrow \circ)$ . The balanced scorecard and the strategic learning process: A system dynamics modeling approach. *Advances in Decision Sciences*,  $\uparrow \cdot \uparrow \circ$ , Article ID  $\uparrow \uparrow \uparrow \lor \lor \circ \land$ ,  $\uparrow \cdot$ pages.

 $\underline{https://doi.org/1,100/7,10/71700A}.$ 

Sales, L.S.B., Roses, L.K., and Prado, H.A.  $({}^{\circ}, {}^{\circ})$ . Application of dynamic balanced scorecard in the Brazilian army information technology governance. *Gest. Prod., São Carlos*,

Zhang, T.  $({}^{\cdot}, {}^{\cdot})$ . An overview of dynamic balanced scorecard. In W Deng (Eds) Future Control and Automation, *Proceedings of the In 2nd International Conference on Future Control and Automation (ICFCA 2012)*, Springer.

