بررسی نسبت سرعت دوران به پیشروی ابزار در جوشکاری همزن اصطکاکی اتصال غیر همجنس آلیاژ آلومینیوم 5083 به تیتانیوم خالص تجاری
محورهای موضوعی : عملیات حرارتیمجتبی صادقی گوغری 1 , مسعود کثیری 2 , کامران امینی 3 *
1 - دانشجوی کارشناسی ارشد جوشکاری، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی
2 - استادیار، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی
3 - استادیار، دانشکده مهندسی مکانیک، واحد تیران، دانشگاه آزاد اسلامی،تیران
کلید واژه: اتصال غیرهمجنس, آلیاژ آلومینیوم-تیتانیوم, جوشکاری همزن اصطکاکی, خواص مکانیکی و ساختار میکروسکوپی,
چکیده مقاله :
جوشکاری همزن اصطکاکی آلیاژهای تیتانیوم با آلومینیوم به خاطر مسائلی ار قبیل سایش ابزار و انتخاب مناسب پارامترهای فرآیند با مشکلات فراوانی همراه است. کنترل مناسب متغیرها جهت بدست آوردن یک جوش سالم و عاری از عیب در جوشکاری اهمیت بسیار زیادی دارد. هدف از انجام این پژوهش بررسی تأثیر تغییرات سرعت دوران و پیشروی ابزار بر ریزساختار و خواص مکانیکی اتصال در جوشکاری همزن اصطکاکی آلیاژهای تیتانیوم خالص تجاری و آلومینیوم 321 H- 5083 است. به همین منظور میکرو ساختار، سختی و آزمون کشش بر روی اتصال مورد بررسی قرار گرفت. بررسی ها نشان داد که نسبت سرعت دورانی به سرعت پیشروی ابزار پارامتر اساسی در تعیین استحکام و ریزساختار نهایی جوش می باشد و بهترین نتیجه برای ریزساختار، سختی و نتایج آزمون کشش در نسبت بهینه 4/22، که مربوط به سرعت دورانی 1120 و سرعت پیشروی 50 می باشد، حاصل شد و کاهش یا افزایش از این نسبت بهینه باعث کاهش استحکام و سختی می گردد. سختی در ناحیۀ جوش برابر 480 ویکرز است بدین معنی که سختی در این ناحیه نسبت به فلز پایه تیتانیوم وآلومینیوم به ترتیب % 16 و%60 افزایش یافته است که به دلیل ترکیب بین فلزی تیتانیوم- آلومینیوم ایجاد شده در ناحیۀ جوش است. استحکام جوش به دست آمده در این نسبت بهینه نیز برابر %20 استحکام فلز پایه آلومنیوم است.
[1] A .David, Z. Feng, “Friction Stir Welding of Advanced Materials”, Materials Science and Engineering A, Vol. 252, pp. 2012-2025, 2004.
[2] H. Uzun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, “Friction Stir Welding of Dissimilar Al 6013-T4 To X5CrNi18-10 Stainless Steel”, Materials and Design ,Vol. 26, pp. 41-46, 2005.
[3] A. fari, G. F. Batalha, E. F. Prados, R. Magnabosco, S. Delijaicove, “Tool Wear Evaluations In Friction Stir Processing Of Commercial Titanium Ti-6Al_4V”, Wear Journal Vol. 302, pp. 1327-1333, 2013.
[4] P. R. Berndt, J. H. Neethling, H. Lombard, M.N. James, D. H. Hattingh, “Microstructural Characterization of Precipitates in Al 5083-H321”, Materials and Design, Vol. 335, pp. 229-435,2005.
[5] W. B. Lee, C. Y. Lee, W. S. Chang, Y. M. Yeon, S. B. Jung, “Microstructural Investigation of Friction Stir Welded Pure Titanium”, Materials Letters, Vol. 59, pp. 3315–318, 2005.
[6] C. Y. Hua, N. Qua, K. L, Ming, “Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys”, Trans Nonferrous Met Soc, China, Vol. 22, pp. 299-304, 2011.
[7] Y. C. Chen, K. Nakata, “Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys”, Materials and Design, Vol. 30, pp. 469-474, 2009.
[8] U. Dressler, G. Biallas, U. A. Mercado, “Friction stir welding of titanium alloy TiAl6V4 to aluminum alloy AA2024-T3”, Materials Science and Engineering A, Vol. 526, pp. 113–117, 2009.
[9] K. S. Bang, K. J. Lee, H. S. Bang, H. S. Bang, “Interfacial Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds between 6061-T6 Aluminum and Ti-6%Al-4%V Alloys”, Materials Transactions, Vol. 52, No. 5, pp. 974–978, 2011.
[10] Y. Chen, C. Liu, G. Liu, “Study on the Joining of Titanium and Aluminum Dissimilar Alloys by Friction Stir Welding”, The Open Materials Science Journal, Vol. 5, pp. 256–261, 2011.
[11] R. Kumar, K .Singh, S. Pandey, “Process Forces and Heat input as Function of Process Parameters in AA5083 Friction Stir Welds”, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 288-298, 2012.
[12] American Society for Testing and Materials (ASTM), Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2004.
[13] R. Nandan, T. Debroy, H. K. D. H. Bhadeshna, “Recent Advances in Friction Stir Welding Process WeldMent Structure”, Progress in Material Science, Vol. 53, pp. 980-1023, 2008.
[14] M. Movahedi, A. H. Kokabi, S. M. S. Reihani, H. Najafi, “Effect of Tool Travel and Rotation Speeds on Weld Znology Of Welding And Joining”, Vol. 17, pp. 162-167, 2012.
[15] L. Zhou, H. J. Liu, Q. W. Liu, “Effect Of Rotation Speed On Microstructural And Mechanical Properties Of Ti-6Al-4V Friction Stir Welded Joints titanium”, Materials and Design, Vol. 31, pp. 2631-2636, 2010.
[16] K. Kitamura, H. Fujii, Y. Iwata, Y. S. Sun, Y. Morisada, “Flexible Control of the Microstructural and mechanical Properties of Friction stir Welded of Ti-6Al-4V joints”, Materials and Design, Vol. 46, pp. 348-354,2012.
[17] U. Dressler, G. Biallas, U. A. Mercado, “Friction stir welding of titanium alloy TiAl6V4 to aluminum alloy AA2024-T3”, Materials Science and Engineering A, Vol. 526, pp. 113-117, 2009.