بررسی تاثیر پارامترهای مختلف بر سینتیک رسوبدهی پوشش SiC اعمال شده به روش CVD بر روی کامپوزیت کربن - کربن
محورهای موضوعی : عملیات حرارتیناصر حسینی 1 , حسین آقاجانی 2 *
1 - کارشناسی ارشد، گروه مهندسی مواد، دانشگاه تبریز، تبریز
2 - استادیار، عضو هیئت علمی، گروه مهندسی مواد، دانشگاه تبریز
کلید واژه: سینتیک, CVD, کامپوزیت کربن-کربن, پوشش SiC,
چکیده مقاله :
در این پژوهش پس از اعمال پوشش SiC به روش رسوب دهی شیمیایی فاز بخار (CVD) بر روی کامپوزیت کربن-کربن، به بررسی تاثیر پارامترهای مختلف بر سینتیک رسوب دهی پرداخته شده است. به منظور بررسی فازی پوشش SiC از آنالیز XRD، ریز ساختار کامپوزیت کربن-کربن قبل و پس از اعمال پوشش SiC از آنالیز SEM و بررسی فرآورده های جانبی فرآیند از آنالیز EDS استفاده شده است. بر این اساس تاثیر پارامترهای دما، ترکیب گاز ورودی، زمان و موقعیت نمونه در رآکتور بر سرعت رسوب دهی بررسی شد. نتایج نشان می دهد با تغییر پارامترهای رسوب دهی با توجه به تغییر مکانیزم رسوب دهی، سرعت آن تحت تاثیر قرار می گیرد. همچنین تصاویر SEM نشان می دهد اندازه بلورهای SiC و ضخامت پوشش در شرایط بهینه رسوب دهی به ترتیب حدود nm 300 و mμ3 است. در نهایت، تصویر SEM سطح کامپوزیت کربن-کربن قبل و بعد از اعمال پوشش SiC مقایسه شده است.
In current investigation, after SiC coating being applied on carbon-carbon composite by chemical vapor deposition method (CVD), the effect of different parameters on deposition kinetic has been studied. In order to investigate the phases of SiC coating, XRD analysis has been used. Moreover, SEM analysis has been carried out to study the morphology of Carbon-Carbon composite before and after SiC coating being applied. Furthermore, in order to study process exhaust, EDS analysis has been performed. In this regard, the effect of following parameters on deposition rate has been studied: temperature, entrance gas composition, time, and position of sample in reactor. The result of the research shows that, regarding to deposition mechanism; changes of deposition parameter affect the deposition rate. In addition, SEM images demonstrate that the crystal size of SiC and coating thickness in optimum condition of deposition are almost 300 nm and 3 μm consecutively. Finally, through the SEM images, the surface of Carbon-Carbon composite before and after SiC coating has been compared.
[1] Delhaes, “Pierre, Fibers and Composites World of Carbon”, Taylor & Francis Routledge, Vol. 2, France, 2003.
[2] M. Inagaki, “New Carbons: Control of structure and Functions”, Elsevier Science Ltd, Japan 2000.
[3] T. D. Burchell, “Carbon materials for advanced Technologies”, Elsevier Science Ltd, USA, 1999.
[4] R. Luo, T. Liu, J. Li, H. Zhang, Zh. Chen& G. Tian, Thermop hysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity, Carbon, Vol. 42, pp. 2887–2895, 2004.
[5] H. Liu, Zh. Jin, Zh. Haob & X. Zeng, Improvement of the mechanical properties of two-dimensional carbon/carbon composites, Materials Science and Engineering, Vol. 483–484A, pp. 316–318, 2008.
[6] Sh. Sh.Tzeng & J. H. Pan, “Densification of two-dimensional carbon/carbon composites by pitch impregnation”, Materials Science and Engineering, Vol. 316A, pp. 127–134, 2001.
[7] M. P. Bacos, “Carbon-carbon composites: oxidation behavior and coatings protection”, Journal de Physique, Vol. 111, pp. 1895-1903, 1993.
[8] J. R. Strife, “Protective Coating for Carbon-Carbon Composites”, in: ASM Hand Book, Surface Engineering, Vol. 5, pp. 2337- 2347, 1994.
[9] J. Don, M. A. Wright & J. He, “Investigation of Oxidation protection Systems for Carbon-Carbon Composites: formed by chemical vapor deposition and plasma-assisted chemical vapor deposition technique”, Air Force Office of Scientific Research, Vol. 0122, 1991.
[10] G. A. Kravetskii, T. D. Firsova & S. A. Kolesnikov, “Composite Refractory Protective Coatings for Carbon-graphite Materials, Refractories and Industrial Ceramics”, Vol. 49, No. 6, 2008.
[11] M. P. Bacos, “Carbon-carbon composites: oxidation behavior and coatings protection”, Journal De Physique, Vol. 3, pp. 1895-1903, 1993.
[12] P. Hu, K. Gui, Y. Yang, Sh. Dong & X. Zhang, “Effect of SiC content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composite”, Materials, Vol. 6, pp.1730-1744, 2013.
[13] S. Jayarman, J. E. Gerbi, Y. Yang, D. Y. Kim, A. Chatterjee, P. Bellon, G. S. Girolami, J. P. Chevalier & J. R. Ableson, “HfB2 and Hf-B-N hard coatings by chemical vapor deposition”, surface & Coatings Technology, Vol. 200, pp. 6629-6633, 2006.
[14] S. Wei, X. Xiang, H. Bai-yun, L. Guo-dong, Zh. Hong-bo, Ch. Zhao-ke & Zh. Xiang-Lin, “ZrC ablation protective coating for carbon/carbon composites”, carbon, Vol. 47, pp. 3365-3380, 2009.
[15] Y. K. Kim & J. Y. Lee, “The effect of SiC co deposition on the oxidation behavior of carbon/carbon composites prepared by chemical vapor deposition”, Carbon, Vol. 31, pp. 1031-1038, 1993.
[16] X. Qiang, H. Li, Y. Zhang, Q. Fu, J. Wei & S. Tian, “A modified dual-layer SiC oxidation protective coating for carbon/carbon composites prepared by one-step pack cementation”, Corrosion Science, Vol. 53, pp. 523–527, 2011.
[17] X. Qiang, H. Li, Y. Zhang, Q. Fu, J. Wei & S. Tian, “A modified dual-layer SiC oxidation protective coating for carbon/carbon composites prepared by one-step pack cementation”, Corrosion Science, Vol. 53, pp. 523–527, 2011.
[18] م. یاری، م. مجتهدزاده و ع. افشار، "تاثیر زمان لایهنشانی بر خواص ساختاری و فیزیکی پوششهای کربنی لایهنشانی شده با روش کندوپاش مگنترونی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال پنجم، شماره دوم، تابستان 1390.
[19] م. رستمی، ر. ابراهیمی و ا. ساعتچی، "اثر افزایش مقدار نانوذرات SiC بر سختی پوششهای نانوکامپوزیتی Ni-SiC-Gr حاصل از آبکاری الکتریکی"، فصلنامه فرآیندهای نوین در مهندسی مواد، سال ششم، شماره اول، بهار 1391.
[20] Pierson, H. O. Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications, Noyes Publications/William Andrew Pub, New Mexico, 1999.
[21] C. Jones & M. L. Hitchman, “Chemical Vapor Deposition: Precursors, Processes and Applications”, Royal Society of Chemistry, Glasgow, 2008.
[22] K. L. Choy, “Chemical vapour deposition of coatings”, Progress in Materials Science, Vol. 48, pp. 57–170, 2003.
[23] ح. ملکی قلعه، ح. آقاجانی، م. محمودی، م. م. برجسته و ح. زمانی، "بررسی اتلاف حرارتی پوشش سد حرارتی نانوساختار ساخته شده به روش EPD"، فصلنامه علمی پژوهش فرآیندهای نوین در مهندسی مواد، سال هشتم، شماره دوم، تابستان 1393.
[24] Y. Yan & Z. Weigang, “Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2”, Chinese Journal of Chemical Engineering, Vol. 17, pp. 419-426, 2009.
[25] Y. J. Lee, D.J. Choi, J.Y. Park & G.W. Hong, “The effect of diluent gasses on the gasses on the growth behavior of CVD SiC films with temperature”, journal of materials science, Vol. 35, pp. 4519–4526, 2000.
[26] Y. Long, A. Javed, Z. k. chen, X. Xiong & P. Xiao, “Deposition Rate, Texture, and Mechanical Properties of SiC coatings Produced by Chemical Vapor Deposition at Different Temperatures”, International Journal Applied Ceramic Technology, Vol. 10, pp. 11-119, 2013.