نقش پایه گرافیتی بر تشکیل ساختار گرادیان ترکیبی C/SiC طی فرایند سمانتاسیون تودهای
محورهای موضوعی : عملیات حرارتیجلیل پوراسد 1 * , ناصر احسانی 2 , سید علی خلیفهسلطانی 3
1 - دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران
2 - استاد، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران
3 - دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران
کلید واژه: سمانتاسیون تودهای, پوشش کاربید سیلیسیم تدریجی, پایه گرافیتی,
چکیده مقاله :
گرافیت به طور گسترده در ساختارهای دمای بالا مورد استفاده قرار گرفتهاست با این حال، گرافیت از دمای حدود 400 درجه سانتیگراد، به آسانی با اکسیژن واکنش میدهد. کاربید سیلیسیم (SiC) با تغییر تدریجی ترکیب در مقیاس میکروسکوپی به عنوان بهترین ماده برای جلوگیری از اکسیداسیون گرافیت شناخته شده است. در این پروژه پوشش SiC بر پنج نوع گرافیت مختلف به روش سمانتاسیون تودهای اعمال گردید و رابطه بین ریزساختار و خواص پایه گرافیتی و ساختار پوشش SiC با یافتههای آزمایشگاهی و محاسبات تئوری بررسی شد. آنالیز پراش اشعه ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM) نشان میدهد که در روش سمانتاسیون تودهای، پوشش کاربید سیلیسیم با تراکم مناسب با ترکیب Si، C و β-SiC ایجاد میشود. نوع گرافیت و خواص آنها نقش مهمی در ریزساختار پوشش تدریجی ایفا میکند، به طوری که پوشش تدریجی SiC تنها بر گرافیت با چگالی بالا، گرافیته شده خوب، تخلخل مناسب و با توزیع اندازه حفرات در محدوده 710-600 نانومتر تشکیل میشود.
The graphite has been generally used as a high-temperature structural material. However, graphite can easily react with oxygen even at temperatures as low as 400 °C. The graded silicon carbide (SiC) characterized by compositional gradation over microscopic distances, is considered to be the most promising coating material in order to prevent the oxidation of graphite. In this paper, SiC coating has been created on five kinds of graphite substrates using a pack cementation method. The relationship between the microstructure and property of graphite substrates and SiC coating was investigated experimentally and theoretically. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis demonstrate that the coating obtained by the pack cementation is a dense structure comprising Si, C and β-SiC. It was found that the kind of graphite has marked effect on the microstructure of SiC coating. SiC gradient coating is expected to form on the surface of graphite with high density, good graphitized, appropriate porosity and the pore radius mainly over the range of 600–710 nm.
[1] E. Fitzer, “Carbon reinforcements and carbon/carbon composites”, Springer Science & Business Media, 1998.
[2] C. R. Thomas, “Essentials of carbon-carbon composites”, Royal Society of Chemistry, Cambridge, 1993.
[3] س. نقیبی، ا. جمشیدی، ز. نعمتی و ح. پایدار، "تأثیر میزان گرافیت و رزین بر خواص دیرگدازهای دولوما گرافیتی"، فصلنامه علمی - پژوهشی فرایندهای نوین در مهندسی مواد، دوره 4، شماره 4، صفحه 17-24، زمستان 1389.
[4] م. قراخانی بنی، ن. احسانی، م. اسماعیلی و ی. صفایی نائینی، "بررسی ریزساختار و خواص کامپوزیت C/C-SiC دوبعدی ساخته شده با روش نوین تلقیح پلیمر و پیرولیز (PIP)"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 157-164، تابستان 1394.
[5] A. Wu, W. Cao, C. Ge, J. Li & A. Kawasaki, “Fabrication and characteristics of plasma facing SiC/C functionally graded composite material”, Materials chemistry and physics, Vol. 91, pp. 545-550, 2005.
[6] X. Yang, C. Zhao-hui & C. Feng, “High-temperature protective coatings for C/SiC composites”, Journal of Asian Ceramic Societies, V0l. 2, pp. 305-309, 2014.
[7] J. Kim, W.-J. Kim, D. Choi, J. Park & W. S. Ryu, “Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites”, Carbon, Vol. 43, pp. 1749-1757, 2005.
[8] Y. L. Zhang, H. J. Li, Q. G. Fu, K. Z. Li, J. Wei & P. Y. Wang, “A C/SiC gradient oxidation protective coating for carbon/carbon composites”, Surface and Coatings Technology, Vol. 201, pp. 3491-3495, 2006.
[9] ASTM C373, “Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity of fired whiteware products”, ASTM International, West Conshohocken, PA, 2006.
[10] P. Morgan, “Carbon fibers and their composites”, Taylor & Francis Boca Raton, FL, 2005.
[11] G. Savage, “Carbon-carbon composites”, Springer Science & Business Media, 1993.
[12] S. Rodrigues, M. Marques, I. Suárez-Ruiz, I. Camean, D. Flores & B. Kwiecinska, “Microstructural investigations of natural and synthetic graphites and semi-graphites”, International Journal of Coal Geology, Vol. 111, pp. 67-79, 2013.
[13] ISO 20203, “Carbonaceous materials used in the production of aluminium - Calcined coke - Determination of crystallite size of calcined petroleum coke by X-ray diffraction”, International Organization for Standardization, Geneva, Switzerland, 2005.
[14] ASTM D4284, “Standard Test Method for Determining Pore Volume Distribution of Catalysts by Mercury Intrusion Porosimetry”, American Society for Testing and Materials, West Conshohocken, PA, 2007.
[15] K. Kaneko, “Determination of pore size and pore size distribution: 1. Adsorbents and catalysts”, Journal of membrane science, Vol. 96, pp. 59-89, 1994.
[16] R. Olesinski & G. Abbaschian, “The C− Si (Carbon-Silicon) system”, Journal of Phase Equilibria, Vol. 5, pp. 486-489, 1984.
[17] Q. Zhu, X. Qiu & C. Ma, “Oxidation resistant SiC coating for graphite materials”, Carbon, Vol. 37, pp. 1475-1484, 1999.
[18] J. Zhao, G. Wang, Q. Guo & L. Liu, “Microstructure and property of SiC coating for carbon materials”, Fusion Engineering and Design, Vol. 82, pp. 363-368, 2007.
J. Zhao, L. Liu, Q. Guo, J. Shi & G. Zhai, “Oxidation protective behavior of SiC/Si–MoSi2 coating for different graphite matrix”, Materials Letters, Vol. 60, pp. 1964-1967, 2006.