ساخت و بهینهسازی حسگر حساس به رطوبت مبتنی بر نانوساختارهای متخلخل تری-اکسید تنگستن/نانوذرات نقره
محورهای موضوعی : سنتز موادایوب کریم زادقویدل 1 , غلامرضا کیانی 2 * , مهسا مهدوی نیا 3
1 - گروه مهندسی مکانیک، دانشگاه فنی و حرفهای، تهران، ایران
2 - گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران
3 - گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران
کلید واژه: نانوذرات نقره, امپدانس, حسگررطوبت, تریاکسید تنگستن, نانوساختارهای متخلخل,
چکیده مقاله :
هدف این تحقیق، ساخت حسگری رطوبتی بر پایه نانوساختار متخلخل تریاکسید تنگستن خالص و دوپ شده با نانوذرات نقره و استفاده از خصوصیات تغییرات اهمی، ظرفیت خازنی و امپدانسی آن در مقابل رطوبت به عنوان خروجی است. مشخصات ساختاری نانوکامپوزیت تهیه شده، توسط میکروسکوپ الکترونی روبشی و دستگاه پراش اشعه ایکس مورد بررسی قرار گرفت. نتایج نشان داد که تریاکسید تنگستن سنتزی به شکل کرههایی با ابعاد 3 تا 7 میکرومتر با ساختار متخلخل سطحی در اندازه 10 تا 60 نانومتر میباشد. برای تولید حسگرها، نخست مواد ترکیب و پراکندهسازی شد، سپس با روش تهنشینی بر روی مدار الکترود شانهای لایهنشانی گردید. بررسیها نشان داد حسگر دوپ شده با نانوذرات نقره، عملکرد بهتری در مقایسه با نمونه تریاکسید تنگستن خالص دارد. حساسیت این حسگر برای محدوده رطوبت نسبی50-20% و 90-50%، بهترتیب 4/4 و MΩ/%RH 68/0 بدست آمد که در مقایسه با نمونههای پیشین، 7 و 5% بهبود یافته است. زمان پاسخ و بازگشت این حسگر 2 و 7 ثانیه اندازهگیری شد که بهترتیب 5/37 و 4/41 برابر کوچکتر از نمونههای دردسترس است. کاهش ظرفیت خازنی حسگر تا Pf 3800، با افزایش رطوبت نسبی به 90% از سایر یافتهها است. تغییرات امپدانسی قابل توجه حسگر در برابر تغییرات رطوبت از سایر نتایج مهم است که نشان میدهد که امپدانس میتواند با جبران خطاهای ناشی از تغییرات اهمی و ظرفیت خازنی، به عنوان خروجی حسگر در نظر گرفته شود.
The aim of this research is to fabricate a moisture sensor based on porous nanostructure of pure tungsten trioxide (WO3) and doped with silver nanoparticles (SN), and to use the properties of ohmic changes, capacitance and impedance versus moisture as output. The structural characteristics of the prepared nanocomposite were examined by a scanning electron microscope and X-ray diffraction spectroscopy. The results showed that synthetic WO3 is in the form of spheres with dimensions of 3 to 7 μm, with a surface porous structure in size of 10 to 60 nm. To fabricate the sensors, first the materials were mixed and dispersed, then coated on the interdigitated electrode by sedimentation method. The investigation showed that the doped sensor with SN have a better performance in comparison with WO3 sample. Its sensitivity was obtained 4.4 and 0.68 MΩ/%RH for the relative humidity range of 20-50% and 50-90%, respectively, improved 7 and 5% compared to similar previous samples. The response and recovery time of this sensor was measured approximately 2 and 7 seconds, which is 37.5 and 41.4 times smaller than available samples, respectively. Decreasing the capacitance of the sensor to 3800 Pf by increasing the relative humidity to 90% is another finding. Significant impedance changes of the sensor versus the humidity alternations is other important result, showing that the impedance can be considered as a sensor output by compensating for errors of ohmic changes and capacitance.
- مراجع
[1] H. Farahani, R. Wagiran & M. N. Hamidon, "Humidity sensors principle, mechanism, and fabrication technologies", Sensors, vol. 14, no. 5, pp. 7881-7939, 2014.
[2] H. Bernstein, "Humidity Sensors", In Measuring Electronics and Sensors, Springer, vol. 0, pp. 309-336, 2022.
[3] T. Delipinar, A. Shafique, M. S. Gohar & M. K. Yapici, "Fabrication and materials integration of flexible humidity sensors for emerging applications", ACS omega, vol. 6, no. 13, pp. 8744-8753, 2021.
[4] M. T. S Chani, "Fabrication and characterization of chitosan-CeO2-CdO nanocomposite based impedimetric humidity sensors", International Journal of Biological Macromolecules, vol. 194, pp. 377-383, 2022.
[5] B. Kulwicki, "Humidity Sensors", Journal of the American Ceramic Society, vol. 74, no. 4, pp. 697–708, 1991.
[6] H. Niu, W. Yue, Y. Li, F. Yin, S. Gao & C. Zhang, "Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring", Sensors and Actuators B: Chemical, vol. 334, pp. 129637, 2021.
[7] Z. Wu, J. Yang, X. Sun, Y. Wu, L. Wang & G. Meng, "An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring", Sensors and Actuators B: Chemical, vol. 337, pp. 129772, 2021.
[8] R. A. Shaukat, M. U. Khan, Q. M. Saqib & M. Y. Chougale, "All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring", Sensors and Actuators B: Chemical, vol. 345, pp. 130371, 2021.
[9] N. Li, X. D. Chen, X. P. Chen & X. Ding, "Ultra-high sensitivity humidity sensor based on MoS 2/Ag composite films", IEEE Electron Device Letters, vol. 38, no. 6, pp. 806-809, 2017.
[10] G. Eranna, B. C. Joshi & D. P. Runthala, "Oxide materials for development of integrated sensors a comprehensive review", Crit Sol State Mater Sci, vol. 29, no. 3-4, pp. 111-188, 2004.
[11] M. Yaseen, O. Ammara, W. Ahmad & M. Shakir, "Preparation of titanium carbide reinforced polymer based composite nanofibers for enhanced humidity sensing", Sensors and Actuators A: Physical, vol. 332, pp. 113201, 2021.
[13] K. J. Choi & H. W. Jang, "One-dimensional oxide nanostructures as gas-sensing materials: review and issue", Sensors, vol. 10, no. 4, pp. 4083-4099, 2010.
[13] ح. صالحی وزیری، ع. شکوه فر و س. س. سید افقهی، "بررسی خواص میکروساختاری و مکانیکی نانوکامپوزیت پایه آلومینیوم تقویت شده با نانوذارت دی سولفید تنگستن"، فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 1، صفحه 1-13، 1399.
[14] A. Vijayan, M. Fuke, R. Hawaldar & M. Kulkarni, "Optical fibre based humidity sensor using Co-polyaniline clad", Sensors and Actuators B: Chemical, vol, 129, no. 1, pp. 106-112, 2008.
[15] N. K. Pandey, K. Tiwari & A. Roy, "Ag doped WO3 nano material as relative humidity sensor", IEEE Sensors Journal, vol. 11, no. 11, pp. 2911-2918, 2011.
[16] G. Korotcenkov, "Practical aspects in design of one-electrode semiconductor gas sensors: status report," Sensors and Actuators B, vol. 121, no. 2, pp. 664–678, 2007.
[17] س. م. کاظمزاده، م. ر. واعظی، س. م. م. هادوی و م. اسفنده، "فرآوری و مشخصهیابی نانوکامپوزیت پلییورتان/نقره با استفاده از تابشدهی امواج ماکروویو"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 4، صفحه 105-116، 1397.
[18] A. Salehi, D. J. Kalantari, B. Singh & A. Goshtasbi, "Rapid response of Au/porous-GaAs humidity sensor at room temperature", Conference on Optoelectronic and Microelectronic Materials and Devices, IEEE, pp. 125-128, 2006.
[19] J. Shah, R. K. Kotnala, B. Singh & H. Kishan, "Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic", Sensors and Actuators B: Chemical, vol. 128, no. 1, pp. 306-311, 2007.
[20] N. Parvatikar, S. Jain & S. Khasim, "Electrical and humidity sensing properties of polyaniline/WO3 composites", Sensors and Actuators B: Chemical vol. 114, no. 2, pp. 599-603, 2006.
[21] F. Tudorache, "Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors", Superlattices and Microstructures, vol. 116, pp. 131-140, 2018.
[22] F. Li, P. Li & H. Zhang, "Preparation and Research of a High-Performance ZnO/SnO2 Humidity Sensor", Sensors, vol. 22, no. 1, pp. 293, 2021.
[23] H. U. Khan, M. Tariq & M. Shah, "Designing and development of polyvinylpyrrolidone-tungsten trioxide (PVP-WO3) nanocomposite conducting film for highly sensitive, stable, and room temperature humidity sensing", Materials Science in Semiconductor Processing, vol. 134, pp. 106053, 2021.
[24] L. Zhang, X. Tang, Z. Lu, Z. Wang, L. Li & Y. Xiao, "Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres", Applied Surface Science, vol. 258, no. 5, pp. 1719-1724, 2011.
[25] N. K. Pandey, K. Tiwari, A. Roy & A. Mishra, "Ag‐Loaded WO3 Ceramic Nanomaterials: Characterization and Moisture Sensing Studies", International Journal of Applied Ceramic Technology, vol. 10, no. 1, pp. 150-159, 2013.
[26] H. J. Kim & J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors", Sensors and Actuators B: Chemical, vol. 192, pp. 607-627, 2014.
[27] V. Bartůněk & O. Smrčková, "Preparation of the silver-superconductor composite by deposition of the silver nanoparticles in the bismuth cuprate superconductor", Journal of Superconductivity and Novel Magnetism, vol. 24, no. 4, pp. 1241-1244, 2011.
[28] M. T. S. Chani, K. S. Karimov, F. A. Khalid & S. A. Moiz, "Polyaniline based impedance humidity sensors", Solid State Sciences, vol. 18, pp. 78-82, 2013.
[29] M. Zhang, T. Ning, S. Zhang, Z. Li & Z. Yuan, "Response time and mechanism of Pd modified TiO2 gas sensor", Materials Science in Semiconductor Processing, vol. 17, pp. 149-154, 2014.
[30] D. Saha, R. Giri, K. K. Mistry & K. Sengupta "Magnesium chromate–TiO2 spinel tape cast thick film as humidity sensor", Sensors and Actuators B: Chemical, vol, 107, no. 1, pp. 323-331, 2005.
[31] U. Ulusoy, S. Şimşek & Ö. Ceyhan, "Investigations for modification of polyacrylamide-bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO22+ adsorption", Adsorption, vol. 9, no. 2, pp. 165-175 2003.
[32] I. Rahim, M. Shah & A. Khan, "Capacitive and resistive response of humidity sensors based on graphene decorated by PMMA and silver nanoparticles", Sensors and Actuators B: Chemical, vol. 267, pp. 42-50, 2018.
[33] M. A. Najeeb, Z. Ahmad & R.A. Shakoor, "Organic thin‐film capacitive and resistive humidity sensors: a focus review", Advanced Materials Interfaces, vol. 5, no. 21, pp. 1800969, 2018.
_||_