بررسی فرآیندهای ترمیم دینامیکی و استاتیکی در تغییرشکل گرم آلیاژ تیتانیوم SP-700
محورهای موضوعی : شکل دهی فلزاتامیرحسین شیخعلی 1 , مریم مرکباتی 2 , سید مهدی عباسی 3
1 - دانشجوی دکتری، رشته مهندسی مواد و متالورژی، پژوهشکده مواد فلزی، دانشگاه صنعتی مالک اشتر
2 - پژوهشکده مواد فلزی، دانشگاه صنعتی مالک اشتر
3 - دانشیار/ پژوهشکده مواد فلزی، دانشگاه صنعتی مالک اشتر
کلید واژه: استحاله فازی, آلیاژ تیتانیوم SP-700, پیچش گرم, تبلورمجدد دینامیکی, ترمیم استاتیکی,
چکیده مقاله :
به منظور بررسی فرآیندهای ترمیم دینامیکی و استاتیکی آلیاژ SP-700، در این تحقیق آزمایش پیچش گرم پیوسته و منقطع در دماهای 850 و ºC1000 با کرنشها و زمانهای بین پاسی مختلف انجام شد. مکانیزم غالب تغییرشکل در دمای ºC1000، تبلورمجدد دینامیکی (DRX) است. درحالیکه در دمای ºC850، تضرس و درهم تنیدگی مرزدانهها مشاهده شد. با این وجود ریزساختار نمونه پیچش گرم در دمای ºC850 حاوی دانههای ریز (10-3 میکرون) بوده که بیانگر وقوع تبلورمجدد دینامیکی است. دانههای تبلورمجدد یافته در اطراف مرزدانهها و نقاط سهگانه از طریق مکانیزم تحدب تشکیل شدهاند. با افزایش کرنش پاس اول (5/0ε=) در دمای ºC1000، بدلیل افزایش نیرو محرکه جوانهزنی و رشد دانههای جدید، سینتیک فرآیند ترمیم استاتیکی نیز افزایش مییابد. اما در کرنشهای حالت پایدار (1ε=) بدلیل وقوع تبلورمجدد دینامیکی کامل حین تغییرشکل، نیرو محرکه و در نتیجه سینتیک فرآیند ترمیم استاتیکی کمتر است. در واقع، در دمای ºC850 علاوه بر ترمیم استاتیکی، وقوع استحاله فازی α به β نیز در کسر نرمشدگی تاثیر دارد.
In order to investigation of dynamic and static restoration of SP-700 alloy, in this study continuous and interrupted hot torsion tests carried out at 850 and 1000ºC at different pass-strains and inter-pass times. The dominant mechanism in hot deformation at 1000°C is dynamic recrystallization (DRX) and consequently the entire microstructure comprises equiaxed grains, whereas at 850°C serration and tanglement of the grain boundaries were observed. Nevertheless, the microstructure of sample twisted at 850°C, indicates the occurrence of DRX and the formation of very fine grains. The mechanism of the formation of recrystallized grains in the vicinity of grain boundaries and triple points is bulging. With an increase in pass-strain (ε=0.5) at 1000°C, due to the increase in driving force for nucleation and growth of new grains, the kinetics of static restoration increases. In fact, at 850°C, in addition to static restoration there is another factor contributing in fractional softening which is β to α phase transformation.
[1] Department of Defense Handbook, “Metallic Materials and Elements for Aerospace Vehicle Structuresˮ, MIL-HDBK-5J, pp.125–131, 2003.
[2] M. J. Tan & S. F. Hassan, “High temperature deformation of titanium SP-700ˮ, Ti-2007 Science and Technology, pp. 567-570, 2007.
[3] Y. H. Lin, S. M. Wu, F. H. Kao, S. H. Wang, J. R. Yang, C. C. Yang & C. S. Chiou, “Microtwin formation in the α phase of duplex titanium alloys affected by strain rateˮ, Materials Science and Engineering A, Vol. 528, pp. 2271–2276, 2011.
[4] A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa & M. Yamada, “Development and applications of titanium alloy SP-700 with high formabilityˮ, Journal of Testing and Evaluation, Vol. 24, pp. 100–109, 1996.
[5] B. Gunawarman, M. Niinomi, T. Akahori, J. Takeda & H. Toda, “Mechanical properties of Ti–4.5Al–3V–2Mo–2Fe and possibility for healthcare applicationsˮ, Materials Science and Engineering C, Vol. 25, pp. 296-303, 2005.
[6] B. Gunawarman, M. Niinomi, D. Eylon, S. Fujishiro, C. Ouchi & T. Kazino, “Improvement in fracture toughness of Ti-4.5Al-3V-2Mo-2Fe through microstructural optimizationˮ, Metallurgical and Materials Transactions A, Vol. 34, pp. 267-275, 2003.
[7] Y. H. Lin, K. H. Hu, F. H. Kao, S. H. Wang, J. R. Yang & C. K. Lin, “Dynamic strain aging in low cycle fatigue of duplex titanium alloysˮ, Materials Science and Engineering A, Vol. 528, pp. 4381–4389, 2011.
[8] H. Fukai, K. Minakawa & C. Ouchi, “Strength–ductility relationship in solution treated and aged α+β type Ti–4.5%Al–3%V–2%Fe–2%Mo titanium alloyˮ, ISIJ International, Vol. 44, pp. 1911–1917, 2004.
[9] AMS 4899C, “Titanium alloy, sheet, strip, and plate Ti - 4.5Al - 3V - 2Fe - 2Mo annealedˮ, 2011.
[10] AMS 4964C, “Titanium alloy bars, wire, forgings, and rings Ti - 4.5Al - 3V - 2Fe - 2Mo annealedˮ, 2011.
[11] S. L. Semiatin & G. D. Lahoti, “Deformation and unstable flow in hot torsion of Ti-6Al-2Sn-4Zr-2Mo-0.1Siˮ, Metallurgical Transactions A, Vol. 12, pp. 1719-1729, 1981.
[12] D. S. Fields & W. A. Backofen, “Determination of strain-hardening characteristics by torsion testingˮ, American Society for Testing and Materials Proceeding, Vol. 54, pp. 1259-1273, 1957.
[13] ASTM A938: “Standard test method for torsion testing of wireˮ, 2013.
[14] S. Sadeghpour, S. M. Abbasi & M. Morakabati, “Deformation-induced martensitic transformation in a new metastable β titanium alloyˮ, Journal of Alloys and Compounds, Vol. 650, pp. 22-29, 2015.
[15] ع. حجّاری، م. مرکّباتی، ر. حسینی، ی. منصوری و س. م. عبّاسی، "بررسی وقوع استحاله فازی در آلیاژ Ti-6242 و تعیین دمای استحاله آن"، فرآیندهای نوین در مهندسی مواد، سال دهم، شماره سوم، صفحه 134-125، 1395.
[16] L. He, A. Dehghan-Manshadi & R. J. Dippenaar, “The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformationˮ, Materials Science and Engineering A, Vol. 549, pp. 163–167, 2012.
[17] R. Srinivasan & I. Weiss, “High temperature deformation of the near beta Ti-15V-3Cr-3Sn-3Al alloyˮ, Proceeings of a Symposium on Beta titanium alloys in the 1990's, Colorado, pp. 283-295, 1993.
[18] T. Furuhara, B. Poorganji, H. Abe & T. Maki, “Dynamic Recovery and Recrystallization in Titanium Alloys by Hot Deformationˮ, JOM, pp. 64-68, 2007.
[19] T. Furuhara, Y. Toji, H. Abe & T. Maki, “Dynamic recovery and recrystallization in beta-titanium alloysˮ, Materials Science Forum, Vol. 426-432, pp. 655-660, 2003.
[20] F. Montheillet, D. Dajno, N. Come, E. Gautier, A. Simon, P. Audrerie, A. M. Chaze & C. Levaillant, “Hot Deformation Of The High Strength Betacez Titanium Alloyˮ, Titanium ’92 Science and Technology, pp. 1347-1354, 1992.
[21] P. D. Nicolaou & S. L. Semiatin, “Effect of Strain-Path Reversal on Microstructure Evolution and Cavitation during Hot Torsion Testing of Ti-6Al-4Vˮ, Metallurgical and Materials Transactions A, Vol. 38, pp. 3023-3032, 2007.
[22] P. Wanjara, M. Jahazi, H. Monajati, S. Yue & J. P. Immarigeon, “Hot working behavior of near-α alloy IMI834ˮ, Materials Science and Engineering A, Vol. 396, pp. 50–60, 2005.
[23] I. Philippart & H. J. Rack, “High temperature dynamic yielding in metastable Ti–6.8Mo–4.5F–1.5Alˮ, Materials Science and Engineering A, Vol. 243, pp. 196–200, 1998.
[24] A. H. Sheikhali, M. Morakkabati & S. M. Abbasi, A. Rezaei, “Superplasticity of coarse-grained Ti-13V-11Cr-3Al alloyˮ, International Journal of Materials Research, Vol. 104, pp. 1122-1127, 2013.
[25] I. Weiss & S. L. Semiatin, “Thermomechanical processing of beta titanium alloys—an overviewˮ, Materials Science and Engineering A, Vol. 243, pp. 46–65, 1998.
[26] P. D. Nicolaou, J. D. Miller & S. L. Semiatin, “Cavitation during Hot-Torsion Testing of Ti-6Al-4Vˮ, Metallurgical and Materials Transactions A, Vol. 36, pp. 3461-3470, 2005.
[27] S. H. Cho & Y. C. Yoo, “Hot rolling simulations of austenitic stainless steelˮ, Journal of Materials Science, Vol. 36, pp. 4267 – 4272, 2001.
[28] S. H. Cho & Y. C. Yoo, “Metadynamic recrystallization of austenitic stainless steelˮ, Journal of Materials Science, Vol. 36, pp. 4279 – 4284, 2001.
[29] P. Vo, M. Jahazi & S. Yue, “Recrystallization during Thermomechanical Processing of IMI834ˮ, Metallurgical and Materials Transactions A, Vol. 39, pp. 2965-2980, 2008.
[30] A. Dehghan-Manshadi, M. R. Barnett, & P. D. Hodgson, “Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part II. Post-deformation Recrystallizationˮ, Metallurgical and Materials Transactions A, Vol. 39, pp.1371-1382, 2008.
[31] S. L. Semiatin, V. Seetharaman & I. Weiss, “Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructureˮ, Materials Science and Engineering A, Vol. 263, pp. 257–271, 1999.
[32] O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk & S. L. Semiatin, “Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatmentˮ, Metallurgical and Materials Transactions A, Vol. 34, pp. 147-159, 2003.
[33] A. Najafizadeh, J. J. Jonas, G. R. Stewart & E. I. Poliak, “The Strain Dependence of Postdynamic Recrystallization in 304 H Stainless Steelˮ, Metallurgical and Materials Transactionsa A, Vol. 37, pp. 1899-1906, 2006.
[34] A. Najafizadeh & J. J. Jonas, “The Strain Dependence of post-deformation softening during the hot deformation of 304 H stainless steelˮ, International Journal of ISSI, Vol. 3, pp. 1-7, 2006.
[35] A. Dehghan Manshadi, M. R. Barnett & P. D. Hodgson, “Recrystallization in AISI 304 austenitic stainless steel during and after hot deformationˮ, Materials Science and Engineering A, Vol. 485, pp. 664–672, 2008.
[36] J. J. Jonas, C. Aranas, A. Fall & M. Jahazi, “Transformation softening in three titanium alloysˮ, Materials and Design, Vol. 113, pp. 305–310, 2017
[37] م. کاویانی و غ. ابراهیمی، "تاثیر پارامترهای ترمومکانیکی بر رفتار بافت آلیاژ منیزیم AZ63"، فرآیندهای نوین در مهندسی مواد، سال یازدهم، شماره اول، صفحه 121-111، 1396.
_||_