تاثیر متغیرهای آبکاری الکتریکی پالسی و عملیات حرارتی بعدی بر خواص پوشش آلیاژی نانو ساختار کبالت-تنگستن
محورهای موضوعی : خوردگی و حفاظت موادسمیه اباذری سیوندی 1 * , سعید رستگاری 2 , شهرام خیراندیش 3
1 - دانشگاه علم و صنعت ایران
2 - دانشگاه علم و صنعت ایران، تهران
3 - عضو هیأت علمی دانشگاه علم و صنعت ایران
کلید واژه: سختی, عملیات حرارتی, آبکاری پالسی, پوشش کبالت-تنگستن, سیکلکاری,
چکیده مقاله :
پوشش آلیاژی نانو ساختار کبالت–تنگستن با استفاده از روش آبکاری الکتریکی پالسی با فرکانس Hz 200 از حمام سیتراتی در دمای °C 60 روی زیر لایه فولاد ساده کربنی تهیه گردید. در این تحقیق، تاثیر غلظت سولفات کبالت در حمام و سیکل کاری بر ساختار بلوری، اندازه کریستالیت، سختی و مقاومت به خوردگی پوشش مورد بررسی قرار گرفت. مورفولوژی سطحی و ترکیب پوششها با استفاده از میکروسکوپ الکترونی روبشی (SEM) و آنالیز EDS مورد بررسی قرار گرفت. اندازه دانه های کریستالی به کمک آنالیز پراش اشعه ایکس(XRD) و رابطه شرر محاسبه شد. میکروسختی پوششها با استفاده از دستگاه میکروسختیسنج ویکرز اندازهگیری شد. بررسی نتایج نشان میدهند پوشش آبکاری شده در غلظت سولفات کبالت mol/l2/0 و سیکل کاری %60 با چگالی جریان متوسط A/dm21 پوشش بهینه با سختی معادل Hv 758 بوده است. عملیات حرارتی پوشش آمورف حاصل از چگالی جریان A/dm24 در شرایط خلا بالا سبب کریستالی شدن پوشش میشود. مقدار سختی پوشش از Hv 436 قبل از عملیات حرارتی به Hv 1059 پس از عملیات حرارتی در دمای Cº 600 رسید. با افزایش دما تا Cº 600 ساختار پلی کریستال با ترکیبات فازی Co3W و CowO4 شکل گرفت که دلیل افزایش سختی در این دما است. عملیات حرارتی سبب بهبود مقاومت به خوردگی پوشش شده است. پوشش عملیات حرارتی شده در دمایCº 400 کمترین نرخ خوردگی را داشت.
cobalt-tungsten anano structure alloy coating was produced using pulse electrodeposition in 200 Hz pulse frequency from citrate electrolyte at 60 °C. In this study the influence of cobalt ions concentration in solution and duty cycle on crystal structure, grain size, hardness and corrosion resistance of coating was investigated. Surface morphology and composition of coatings was examined by scanning electron microscopy (SEM) and (EDS) analysis. The crystallite size of the coatings calculated from the x-ray diffraction patterns using the Scherrer equation. Micro hardness of the coatings was assessed using a Vickers micro-indenter. Results showed that electrodeposited coating at 0.2 mol/l cobalt sulphate and 60% duty cycle with 1A/dm2had optimum coating on 758 Hv. Annealing amorphous coating was produced at current density of 4 A/dm2 in high vacuum pressure makes crystalline coating. Increasing temperature at 600°C makes a well-developed polycrystalline structure of Co3W and CowO4 in the coating. Microhardness of coating increased from 436 Hv to 1059 Hv after heat treatment at 600 °C. Heat treatment of coating improved the corrosion resistance of coating. The coating heat treated at 400 ºC had minimum corrosion rate.
[1] T. Nasu, M. Sakurai, T. Kamiyama, T. Usuki, O. Uemura, K. Tokumitsu & T. Yamasaki, “Structural comparison of M–W (M = Fe, Ni) alloys produced by electrodeposition and mechanical alloyingˮ, Materials Science and Engineering A, Vol. 163, pp. 375–377, 2004.
[2] س. ایمانیان قازانلو، ع. شکوه فر و ح.بخشی، "تولید پوشش نانوکامپوزیتی Ni-Co/SiO2 به روش رسوب رسوب الکتروشیمیایی جریان مستقیم"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 2، صفحه 65-74، 1395.
[3] C. N. Tharamani, P. Beera, V. Jayaram, N. S. Begum & S. M. Mayanna, “Studies on electrodeposition of Fe–W alloys for fuel cell applicationsˮ, Applied Surface Science, Vol. 253, pp. 2031-2037, 2006.
[4] K. R. Sriraman, S. G. Raman & S. K. Seshadri, “Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nano crystalline Ni–W alloysˮ, Materials Science and Engineering A, Vol. 418, pp. 303-311, 2006.
[5] C. N. Panagopoulos, V. D. Papachristos & L. W. Christoffersen, “Lubricated sliding wear behaviour of Ni–P–W multilayered alloy coatings produced by pulse platingˮ, Thin Solid Films, Vol. 366, pp. 155-163, 2000.
[6] V. Richoux, S. D., C. Boulanger & J. M. Lecuire, “Pulsed electrodeposition of bismuth telluride films: Influence of pulse parameters over nucleation and morphologyˮ, Electrochimica Acta, Vol. 52, pp. 3053–3060, 2007.
[7] E. W. Brooman, “Wear behavior of environmentally acceptable alternatives to chromium coatings: cobalt-based and other coatingsˮ, Metal Finishing, Vol. 102, No. 10, pp. 42–54, 2004.
[8] H. Lou & Y. Huang, Electroplating, Encyclopedia of Chemichal Processing Doi, 2006.
[9] V. Boltushkin, V. G. Shadrow, V. M. Fedosyuk & S. S. Grabchikow, “Heat treatment effect on structure and magnetic properties of hard Magnetic Co-W flms for perpendicular magnetic recordingˮ, Czechoslovak Journal of Physics B, Vol. 38, No. 10, pp. 1174-1176, 1988.
[10] N. Tsyntsaru, A. Dikusar, H. Cesiulis, J. P. Celis, Z. Bobanova, S. Sidel’nikova, S. Belevskii, Y. Yapontseva, O. Bersirova & V. Kublanovskii, “Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloysˮ, Powder Metallurgy and Metal Ceramics, Vol. 48, pp. 419, 2009.
[11] V. V. Shtefan, M. V. Ved’, M. D. Sakhnenko, L. V. Pomoshnyk & L. P. Fomina, “Regularities of the deposition of cobalt-tungsten alloys by pulsed currentsˮ, Materials Science, Vol. 43, pp. 429-433, 2007.
[12] D. Z. Grabco, I. A. Dikusar, V. I. Petrenko, E. E. Harea & O. A. Shikimaka, “Micromechanical properties of Co-W alloys electrodeposited under pulse conditionsˮ, Surface Engineering and Applied Electrochemistry, Vol. 43, pp. 11-17, 2007.
[13] H. Capel, P. H. Shipway & S. J. Harris, “Sliding wear behaviour of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloysˮ, Wear, Vol. 255, pp. 917-923, 2003.
[14] M. Mulukutla, V. K. Kommineni & S. P. Harimkar, “Pulsed electrodeposition of Co–W amorphous and crystalline coatingsˮ, Applied Surface Science, Vol. 258, pp. 2886-2893, 2012.
[15] L. Wang, Y. Gao, T. Xu & Q. Xue, “A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structureˮ, Materials Chemistry and Physics, Vol. 99, pp. 96-103, 2006.
[16] M. A. M. Ibrahim, S. S. Abd El Rehim & S. O. Moussa, “Electrodeposition of noncrystalline cobalt–tungsten alloys from citrate electrolytesˮ, Journal of Applied Electrochemistry, Vol. 33, pp. 627-633, 2003.
[17] Z. A. Hamid, “Electrodeposition of cobalt–tungsten alloys from acidic bath containing cationic surfactantsˮ, Materials Letters, Vol. 57, pp. 2558–2564, 2003.
[18] C. L. Aravinda, V. S. Muralidharan & S. M. Mayanna, “Electrodeposition and dissolution of Co-W alloyˮ, Applied Electrochemistry, Vol. 30, pp. 601-606, 2000.
[19] Z. Zhang, F. Zhou & E. J. Lavernia, “On the analysis of grain size in bulk nanocrystalline materials via x-ray diffractionˮ, Metallurgical and Materials Transactions A, Vol. 34, pp. 1349-1355, 2003.
[20] S. S. Belevskii, S. P. Yushchenko & A. I. Dikusar, “Anomalous electrodeposition of Co-W coatings from a citrate electrolyte due to the formation of multinuclear heterometallic complexes in the solutionˮ, Surface Engineering and Applied Electrochemistry, Vol. 48, 2012.
[21] D. Landolt & A. Marlot, “Microstructure and composition of pulse-plated metals and alloysˮ, Surface & Coatings Technology, Vol. 169, pp. 8-13, 2003.
[22] F. Su, C. Liu & P. Huang, “Friction and wear of nanocrystalline Co and Co–W alloy coatings produced by pulse reverse electrodepositionˮ, Wear, Vol. 300, pp. 114-125, 2013.
[23] N. Tsyntsaru, H. Cesiulis, A. Budreika, X. Ye, R. Juskenas & Celis, “The effect of electrodeposition conditions and post-annealing on nanostructure of Co–W coatingsˮ, Surface & Coatings Technology, Vol. 206, pp. 4262-4269, 2012.
[24] H. Capel, P. H. Shipway & S. J. Harris, “Sliding wear behaviour of electrodeposited cobalt–tungstenand cobalt–tungsten–iron alloysˮ, Wear, Vol. 255, pp. 917-923, 2003.
[25] D. P. Weston, S. P. A. Gill, M. Fay, S. J. Harris, G. N. Yap, D. Zhang & K. Dinsdale, “Nano-structure of Co–W alloy electrodeposited from gluconate bathˮ, Surface & Coatings Technology, Vol. 236, pp. 75-83, 2013.
[26] Z. Ghaferi, K. Raissi, M. A. Golozar, A. Saatchi & S. Kabi, “Comparision of Electrodeposition Aspects of Ni-W and Co-W Alloy Nanocrystalline Cotingsˮ, Iranian of Materials Science & Engineering, Vol. 7, 2010.
[27] P. Harrasati, C. Ponce De Leon & F. C. Walsh, “The corrosion Behaviour of Nano grained Metals and Alloysˮ, Revista De Metalurgia, Vol. 48, pp. 377-394, 2012.
[28] س. فضلی و م ا بحرالعلوم، "بررسی تاثیرعوامل موثر بر مورفولوژی و ساختار نانویی پوشش های آلیاژی نیکل- آهن تهیه شده به روش آبکاری الکتریکی"، فرآیندهای نوین در مهندسی مواد، دوره 7، شماره 2، صفحه 23-17، 1392.
_||_