بررسی خواص حسگری نانوهیبرید SnO2 و آلیاژ دوفلزی PdPt نسبت به گاز متان و تاثیر افزودن اکسیدگرافن کاهشیافته بر بهبود خواص حسگری آن
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدشیوا نوازنی 1 , علی شکوه فر 2 , مصطفی حسنی سعدی 3
1 - آزمایشگاه مواد پیشرفته و نانوتکنولوژی، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2 - دانشکده مهندسی و علم مواد-دانشگاه خواجه نصیرالدین طوسی
3 - مرکز تحقیقاتی نانوتکنولوژی، پژوهشگاه صنعت نفت، تهران،ایران
کلید واژه: SnO2, نانوحسگر, آلیاژساختار دوفلزی PdPt, اکسید گرافن کاهش یافته, گاز متان,
چکیده مقاله :
در این مقاله، خواص حسگری نانوهیبرید SnO2-PdPt نسبت به گاز متان و تاثیر افزوده شدن اکسید گرافن کاهشیافته بر بهبود خواص حسگری این نانوحسگر، مورد بررسی قرار گرفته است. برای این منظور، ابتدا به روش هیدروترمال SnO2 سنتز شد و سپس با کاتالیستهای Pd، Pt و PdPt هیبرید شد. برای بررسی اثر اکسید گرافن کاهش یافته بر بهبود خواص حسگری، به جای SnO2 از SnO2-rGO سنتز شده به روش هیدروترمال درجا، استفاده شد. نتایج نشان دادند که نانوحسگر هیبریدی با آلیاژ دوفلزی نسبت به ساختارهای هیبریدی تک فلزی، پاسخ بالاتری در دمای پایینتر دارد و از طرف دیگر، اضافه شدن اکسید گرافن کاهش یافته، سبب کاهش دمای بهینه حسگری SnO2-PdPt و افزایش میزان پاسخ آن نسبت به متان شد. نانوحسگر SnO2-PdPt در دمای oC 200 ، به ppm1000 متان به میزان 52.22% پاسخ داد. زمان پاسخ و بازیابی آن به ترتیب 94 ثانیه و 3.5 دقیقه است، در حالیکه نانوحسگر SnO2-rGO-PdPt ، به این مقدار از متان در دمای oC 150 ، 69.5% پاسخ با زمان پاسخ و بازیابی 50 ثانیه و 4.5 دقیقه نشان داد.
In this paper, the sensing properties of SnO2-PdPt nanohybrid to methane gas and effect of reduced graphene oxide (rGO) on improving its sensing performance was investigated. For this reason, first SnO2 was synthesized by hydrothermal method and then hybridized by Pd, Pt and PdPt catalysts. For investigating the effect of rGO, by the in-situ hydrothermal method, SnO2-rGO was synthesized instead of SnO2. Results showed that the nanohybrid sensor with bimetallic alloy catalyst, had higher response t lower temperature compared with monometallic catalysts and on the other hand, adding rGO, reduced the optimum sensing temperature of SnO2-PdPt and enhanced its response to methane. The SnO2-PdPt nanosensor showed 52.22% response to 1000ppm CH4 at 200oC. The sensing response and recovery times for this hybrid were 94s and 3.5min respectively, whilst the SnO2-rGO-PdPt showed 69.5% response at 150oC to the same concentration of methane. The response and recovery times for this hybrid were 50s and 4.5min respectively.
[1] M. J. Prather & C. D. Holmes, “Overexplaining or underexplaining methane’s role in climate changeˮ, Proc. Natl. Acad. Sci., 201704884, 2017.
[2] A. Tsuruta, T. Aalto, L. Backman, J. Hakkarainen, I. T. Van Der Laan-Luijkx, M. C. Krol, R. Spahni, S. Houweling, M. Laine & E. Dlugokencky, “Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1. 0ˮ, Geosci. Model Dev., Vol. 10, pp. 1261–1289, 2017.
[3] S. Houweling, P. Bergamaschi, F. Chevallier, M. Heimann, T. Kaminski, M. Krol, A. M. Michalak & P. Patra, “Global inverse modeling of CH 4 sources and sinks: an overview of methodsˮ, Atmos. Chem. Phys., Vol. 17, pp. 235–256, 2017.
[4] X. Jiang, D. Mira & D. L. Cluff, “The combustion mitigation of methane as a non-CO 2 greenhouse gasˮ, Prog. Energy Combust. Sci., 2016.
[5] ح. غیور، ا. نکوبین و ا. ع. نوربخش، "بپوشش نانو سیمهای اکسید روی بر روی الکترود آرایه های درهم تنیده طلا و بررسی عملکرد نانو حسگر گازهای الکلی"، فصلنلمه علمی پژوهشی -فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 2، صفحه 22-13، 1395.
[6] K. Jain, R. P. Pant & S. T. Lakshmikumar, “Effect of Ni doping on thick film SnO 2 gas sensorˮ, Sensors Actuators B Chem., Vol. 113, pp. 823–829, 2006.
[7] X. Zhou, Y. Xu, Q. Cao & S. Niu, “Metal-semiconductor ohmic contact of SnO2-based ceramic gas sensorsˮ, Sensors Actuators B Chem., Vol. 41, pp. 163–167, 1997.
[8] W. Göpel & G. Reinhardt, “Metal oxide sensors: new devices through tailoring interfaces on the atomic scaleˮ, Sensors Updat., Vol. 1, pp. 49–120, 1996.
[9] W. Walukiewicz, “Mechanism of fermi-level stabilization in semiconductorsˮ, Phys. Rev. B., Vol. 37, pp. 4760, 1988.
[10] A. S. M. I. Uddin, D. T. Phan & G. S. Chung, “Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybridˮ, Sensors Actuators B Chem., Vol. 207 pp. 362–369, 2015.
[11] E. W. Hill, A. Vijayaragahvan & K. Novoselov, “Graphene sensorsˮ, Sensors Journal, IEEE., Vol. 11 pp. 3161–3170, 2011.
[12] L. Li, S. He, M. Liu, C. Zhang & W. Chen, “Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperatureˮ, Anal. Chem., Vol. 87, pp. 1638–1645, 2015.
[13] Z. K. Horastani, S. M. Sayedi, M. H. Sheikhi & E. Rahimi, “Effect of silver additive on electrical conductivity and methane sensitivity of SnO 2ˮ, Mater. Sci. Semicond. Process., Vol. 35, pp. 38–44, 2015.
[14] P. G. Su & L. Y. Yang, “NH 3 gas sensor based on Pd/SnO 2/RGO ternary composite operated at room-temperatureˮ, Sensors Actuators B Chem., Vol. 223, pp. 202–208, 2016.
[15] S. Ahmadnia-Feyzabad, A. A. Khodadadi, M. Vesali-Naseh & Y. Mortazavi, “Highly sensitive and selective sensors to volatile organic compounds using MWCNTs/SnO 2ˮ, Sensors Actuators B Chem., Vol. 166, pp. 150–155, 2012.
[16] S. C. Chang, “Sensing mechanisms of thin film tin oxideˮ, Chem. Sensors., Vol. 135, 1983.
[17] J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams & B. C. Tofield, “Tin dioxide gas sensors. Part 2.—The role of surface additivesˮ, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases., Vol. 84, pp. 441–457, 1988.
[18] N. Yamazoe, Y. Kurokawa & T. Seiyama, “Effects of additives on semiconductor gas sensorsˮ, Sensors and Actuators., Vol. 4, pp. 283–289, 1983.
[19] A. R. Phani, “X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensorˮ, Appl. Phys. Lett., Vol. 71, pp. 2358–2360, 1997.
[20] D. Haridas & V. Gupta, “Enhanced response characteristics of SnO 2 thin film based sensors loaded with Pd clusters for methane detectionˮ, Sensors Actuators B Chem., Vol. 166, pp. 156–164, 2012.
[21] A. Cabot, A. Dieguez, A. Romano-Rodrıguez, J. R. Morante & N. Barsan, “Influence of the catalytic introduction procedure on the nano-SnO 2 gas sensor performances: Where and how stay the catalytic atoms?ˮ, Sensors Actuators B Chem., Vol. 79, pp. 98–106, 2001.
[22] W. P. Kang, Y. Gurbuz, J. L. Davidson & D. V. Kerns, “A new hydrogen sensor using a polycrystalline diamond‐based schottky diode, J. Electrochem. Soc., Vol. 141, pp. 2231–2234, 1994.
[23] P. Tyagi, A. Sharma, M. Tomar & V. Gupta, “Metal oxide catalyst assisted SnO 2 thin film based SO 2 gas sensorˮ, Sensors Actuators B Chem., Vol. 224, pp. 282–289, 2016.
[24] G. Sakai, N. Matsunaga, K. Shimanoe & N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensorˮ, Sensors Actuators B Chem., Vol. 80, pp. 125–131, 2001.
[25] K. Anand, O. Singh, M. P. Singh, J. Kaur & R. C. Singh, “Hydrogen sensor based on graphene/ZnO nanocompositeˮ, Sensors Actuators B Chem., Vol. 195, pp. 409–415, 2014.
[26] Q. Lin, Y. Li & M. Yang, “Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperatureˮ, Sensors Actuators B Chem., Vol. 173, pp. 139–147, 2012.
[27] R. K. Mishra, S. B. Upadhyay, A. Kushwaha, T. H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P. P. Sahay & S. H. Lee, “SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensorˮ, Nanoscale., Vol. 7, pp. 11971–11979, 2015.
[28] H. Zhang, J. Feng, T. Fei, S. Liu & T. Zhang, “SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperatureˮ, Sensors Actuators B Chem., Vol. 190, pp. 472–478, 2014.
[29] S. Basu & P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensorsˮ, Sensors Actuators B Chem., Vol. 173, pp. 1–21, 2012.
[30] M. Lyubovsky & L. Pfefferle, “Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activityˮ, Catal. Today., Vol. 47, pp. 29-44, 1999.
[31] S. Tymen, A. Undisz, M. Rettenmayr & A. Ignaszak, “Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reductionˮ, J. Mater. Res., Vol. 30, pp. 2327–2339, 2015.
[32] ر. خالقیان مقدم، "بررسی فعالیت کاتالیستی نانوکامپوزیت پالادیم- نانولوله های کربنی جهت الکترواکسایش متانول در پیل های سوختی و مقایسه آن با کاتالیست پلاتینی"، فصلنلمه علمی پژوهشی -فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 1، صفحه 161-168، 1396.
[33] Y. Li, H. Wang, Y. Chen & M. Yang, “A multi-walled carbon nanotube/palladium nanocomposite prepared by a facile method for the detection of methane at room temperatureˮ, Sensors Actuators B Chem., Vol. 132, pp. 155–158, 2008.
[34] Y. Lu, J. Li, J. Han, H. T. Ng, C. Binder, C. Partridge & M. Meyyappan, “Room temperature methane detection using palladium loaded single-walled carbon nanotube sensorsˮ, Chem. Phys. Lett., Vol. 391, pp. 344–348, 2004.
[35] C. F. Cullis, T. G. Nevell & D. L. Trimm, “Role of the catalyst support in the oxidation of methane over palladiumˮ, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. Vol. 68, pp. 1406-1412, 1972.
[36] G. Lapisardi, L. Urfels, P. Gélin, M. Primet, A. Kaddouri, E. Garbowski, S. Toppi & E. Tena, “Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperatureˮ, Catal. Today., Vol. 117, pp. 564-568, 2006.
[37] K. Persson, A. Ersson, K. Jansson, J. L. G. Fierro & S. G. Järås, “Influence of molar ratio on Pd–Pt catalysts for methane combustionˮ, J. Catal., Vol. 243, pp. 14-24, 2006.
[38] J. W. Hong, S. W. Kang, B. S. Choi, D. Kim, S. B. Lee & S. W. Han, “Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reductionˮ, ACS Nano., Vol. 6, pp. 2410-2419, 2012.
[39] R. Ghosh, A. K. Nayak, S. Santra, D. Pradhan & P. K. Guha, “Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid filmsˮ, RSC Adv., Vol. 5, pp. 50165-50173, 2015.
[40] S. Navazani, A. Shokuhfar, M. Hassanisadi, M. Askarieh, A. Di Carlo & A. Agresti, “Facile synthesis of a SnO 2@ rGO nanohybrid and optimization of its methane-sensing parametersˮ, Talanta., 2018.
[41] A. P. Rambu, N. Iftimie, V. Nica, M. Dobromir & S. Tascu, “Efficient methane detection by Co doping of ZnO thin filmsˮ, Superlattices Microstruct., Vol. 78, pp. 61-70, 2015.
[42] S. B. Naghadeh, S. Vahdatifar, Y. Mortazavi, A. A. Khodadadi & A. Abbasi, “Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO 2 nanocomposite gas sensing properties at low temperaturesˮ, Sensors Actuators B Chem., Vol. 223, pp. 252-260, 2016.
_||_