مطالعه تغییرات فازی، ساختاری و جذب امواج مایکروویو پودر مغناطیسی با ترکیب BaZn0.6Zr0.3X0.3Fe10.8O19 (X=Ti,Ce,Sn)
محورهای موضوعی : سنتز موادمحسن صالحی 1 * , صاحبعلی منافی 2 , سید سلمان سید افقهی 3 , مجتبی جعفریان 4
1 - دانشجوی دکتری، شرکت نانـوفن آزمـایان پیشرو، مدیرعامل و هیئتمدیره، پـردیس خوارزمی، پـارک علم و فنـاوری استان سمنان، ایران
2 - دانشیـار، گروه مهندسی مواد، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
3 - استادیار، دانشگاه امام حسین (ع)، دانشکده فنی مهندسی، گروه مهندسی مواد، تهران، ایران
4 - باشگاه پژوهشگران جوان و نخبگان، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: خواص مغناطیسی, فعالسازی مکانیکی, هگزافریت باریم, جذب مایکروویو,
چکیده مقاله :
در این پژوهش نمونههای هگزافریت باریم با ترکیب BaZn0.6Zr0.3X0.3Fe10.8O19 (X=Ti,Ce,Sn) به روش فعالسازی مکانیکی سنتز و بوسیله بوسیله آنالیزهای پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM)، مغناطیسسنج نمونه مرتعش (VSM) و تجزیه و تحلیل شبکه بردار (VNA) مورد ارزیابی قرار گرفتند. نتایج آنالیز پراش اشعه ایکس تایید کننده حضور فاز غالب هگزافریت باریم به همراه مقدار ناچیزی فاز غیرمغناطیسی هماتیت در ترکیب نمونهها بود. پارامترهای شبکه a و c با توجه به اختلاف شعاعهای یونی یونهای مهمان و میزبان افزایش پیدا کرد که بیشترین میزان افزایش مربوط به نمونه حاوی یون سریوم بود. نتایج FE-SEM تایید کننده میانگین اندازه ذرات در حدود nm 450 و nm 250 به ترتیب برای نمونه دوپ نشده و دوپ شده بودند. طبق منحنیهای M-H مقادیر مغناطش اشباع (Ms) و نیروی وادارندگی (Hc) در تمامی نمونهها کاهش یافت و تغییرات قابل توجهی در خواص مغناطیسی هگزافریت باریم در اثر جانشینی یون های آهن مشاهده شد. طبق نتایج بیشترین میزان مغناطش اشباع (emu/g 1/33 ) و کمترین نیروی پسماندزدا (Oe 14/18) مربوط به نمونه با ترکیب BaZn0.6Zr0.3Ti0.3Fe10.8O19 و BaZn0.6Zr0.3Sn0.3Fe10.8O19 بود. نتایج جذب امواج مایکروویو در محدوده فرکانسی GHz 4/12-8 نشان دهنده بیشترین میزان جذب مربوط به نمونه با ترکیب BaZn0.6Zr0.3Sn0.3Fe10.8O19 در فرکانس GHz 1/11 به میزان dB 3/16- بود.
In this research, barium hexaferrite samples with BaZn0.6Zr0.3X0.3Fe10.8O19 (X=Ti,Ce,Sn) composition were synthesized via mechanical activation method and were evaluated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and Vector network analysis (VNA). X-ray diffraction results confirmed the present of barium hexaferrite as a dominant phase with small amount of hematite as a non-magnetic phase in the sample compound. Lattice parameters a and c was increased due to the difference between ionic radius of guest and host ions and the largest increases was related to the sample that containing cerium ion. The FE-SEM results confirmed the average particles size of about 450 nm and 250 nm for samples without and with dopant respectively. According to M-H curves the value of saturation magnetization (Ms) and coercive force (Hc) was reduced in all cases and significant changes were observed in magnetic properties of barium hexaferrite with the effect of substitution of Fe ions. According to the results maximum magnetic saturation (33.1 emu/g) and minimum coercivity force (8.14 Oe) were related to samples with composition of BaZn0.6Zr0.3Ti0.3Fe10.8O19 and BaZn0.6Zr0.3Sn0.3Fe10.8O19 respectively. According to the results of microwave absorption in the frequency range of 8-12.4 GHz the maximum absorption was related to the sample with the composition of BaZn0.6Zr0.3Sn0.3Fe10.8O19 at the frequency of 11.1 GHz was -16.3 dB.
[1] L. Zhao, X. Lv, Y. Wei, C. Ma & L. Zhao, "Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system", Journal of Magnetism and Magnetic Materials,Vol. 332, pp. 44-47, 2013.
[2] X. Xu, J. Park, Y. K. Hong & A. M. Lane,"Synthesis and characterization of hollow mesoporous BaFe12O19 spheres", Journal of Solid State Chemistry, Vol. 222, pp. 84-89, 2015.
[3] ا. ع. نوربخش، م. نوربخش، م. شایگان و س. غربیان، "تأثیر افزودن یون کروم بر آنالیز فازی، ریزساختاری و خواص مغناطیسی بدنههای هگزافریت استرانسیوم تهیه شده به روش حالت جامد"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، جلد چهارم، 34-26، 1389.
[4] M. J. Molaei, A. Ataie, S. Raygan & S. J. Picken, "Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite", Materials Characterization, Vol. 101, pp. 78-82, 2015.
[5] S. S. Fortes, J. G. S. Duque & M. A. Macedo, "Nanocrystals of BaFe12O19 obtained by the proteic sol-gel process", Physica B: Condensed Matter, Vol. 384, pp. 88-90, 2006.
[6] G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue & Z. He,"Influence of pH on characteristics of BaFe12O19powder prepared by sol–gelauto-combustion", Journal of Magnetism and Magnetic Materials, Vol. 301, pp. 383-388, 2006.
[7] L. Zhao, X. Lv, Y. Wei, C. Ma & L. Zhao,"Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system", Journal of Magnetism and Magnetic Materials, Vol. 332, pp. 44-47, 2013.
[8] X. Xu, J. Park, Y. K. Hong & A. M. Lane,"Synthesis and characterization of hollow mesoporous BaFe12O19 spheres", Journal of Solid State Chemistry, Vol. 222, pp. 84-89, 2015.
[9] H. F. Yu, "BaFe12O19 powder with high magnetization prepared by acetone- aided coprecipitation", J. Magn. Magn. Mater, Vol. 341, pp. 79-85, 2013.
[10] M. M. Rashad & I. A. Ibrahim,"Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method", Journal of Magnetism and Magnetic Materials, Vol. 323, pp. 2158-2164, 2011.
[11] V. Pillai, P. Kumar, M. S. Multani & D. O. Shah,"Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 80, pp. 69-75, 1993.
[12] G. Nabiyouni, D. Ghanbari, A. Yousofnejad & M. Seraj "A sonochemical-assisted method for synthesis of BaFe12O19 nanoparticles and hard magnetic nanocomposites", Journal of Industrial and Engineering Chemistry, Vol. 20, pp. 3425-3429, 2014.
[13] K. V. Shafi & A. Gedanken, "Sonochemical approach to the preparation of barium hexaferrite nanoparticles", Nanostructured Materials, Vol. 12, pp. 29-34, 1999.
[14] J. Qiu, H. Shen & M. Gu,"Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling", Powder Technology, Vol. 154, pp. 116-119, 2005.
[15] S. Dursun, R. Topkaya, N. Akdogan & S. Alkoy,"Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcinations routes", Ceramics International, Vol. 38, pp. 3801-3806, 2012.
[16] R. Mendonca Almeida, W. Paraguassu, D. Soares Pires, R. Ribeiro Correa & C. W. de-Araujo Paschoal,"Impedance spectroscopy analysis of BaFe12O19 M-type hexaferrite obtained by ceramic method", Ceramics International, Vol. 35, pp. 2443-2447, 2009.
[17] ص. منافی، م. جعفریان و ص. خانی،"سنتز نانوساختارهای کلسیم تیتانات (CaTiO3) به روش آلیاژسازی مکانیکی بدون عملیات حرارتی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، جلد هفتم، صفحه 38-31، 1392.
[18] A. M. Gadaila & H. W. Hennicke,"Formation of Barium Hexaferrite", Journal of Magnetism and Magnetic Materials, Vol. 1, pp. 144-152, 1975.
[19] O. Acher, "Modern microwave magnetic materials: Recent advances and trends", Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 2033-2034, 2009.
[20] M. Awawdeh, I. Bsoul & S. H. Mahmood, "Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites", Journal of Alloys and Compounds, Vol. 585, pp. 465-473, 2014.
[21] S. Verma, O. P. Pandey, A. Paesano & P. Sharma, "Comparison of structural and magnetic properties of La3+ substituted BaFe12O19 prepared by different substitution methods", Physica B: Condensed Matter, Vol. 448, pp. 57-59, 2014.
[22] J. Li, H. Zhang, Q. Li, Y. Li & G. Yu,"Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites", Journal of Rare Earths, Vol. 31, pp. 983-987, 2013.
[23] T. Kaur, B. Kaur, B. Bhat, S. Kumar & A. K. Srivastava,"Effect of calcinations temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites", Physica B, Vol. 456, pp. 206-212, 2015.
[24] M. Zhang, Z. Zi, Q. Liu, X. Zhu, C. Liang, Y. Sun & J. Dai, "Solvothermal synthesis and magnetic properties of BaFe12−2x(NiTi)xO19 nanoparticles", Journal of Magnetism and Magnetic Materials, Vol. 369, pp. 23-26, 2014.
[25] M. Kishimoto, S. Kitahata & M. Amemiya, "Structural and Magnetic Properties of BaCoxFe12xO19 (x=0.2, 0.4, 0.6, 1) Nanoferrites Synthesized via Citrate Sol-Gel Method", J. Appl. Phys, Vol. 61, pp. 101-104, 2011.
[26] A. Xia, D. Du, P. Li & Y. Sun, "Crystalline structures and intrinsic magnetic properties of ZnTi-substituted hexagonal M-type Ba ferrite powder", J. Mater. Sci.: Mater. Electron, Vol. 22, pp. 223–227, 2011.
[27] Z. F. Zi, Q. C. Liu, J. M. Dai & Y. P. Sun, "Effects of Ce–Co substitution on the magnetic properties of M-type barium hexaferrites", Solid State Communications, Vol. 152, pp. 894-897, 2012.
[28] V. V. Soman, V. M. Nanoti & D. K. Kulkarni, "Effect of Substitution of Zn-Ti on Magnetic and Dielectric Properties of BaFe12O19", Physics Procedia, Vol. 54, pp. 30-37, 2014.
[29] M. Sharma, S. C. Kashyap & H. C. Gupta,"Effect of Mg–Zr substitution and microwave processing on magnetic properties of barium hexaferrite", Physica B: Condensed Matter, Vol. 448, pp. 24-28, 2014.
[30] M. Jamalian, "An investigation of structural, magnetic and microwave properties of strontium hexaferrite nanoparticles prepared by a sol-gel process with doping Sn and Tb", Journal of Magnetism and Magnetic Materials, Vol. 378, pp. 217-220, 2015.
_||_