افزایش پایداری حرارتی شیشه ی فلزی حجمی Zr56Co28Al16 با افزودن عناصر نقره و مس
محورهای موضوعی : عملیات حرارتیمسعود محمدی رهورد 1 * , مرتضی تمیزی فر 2 , سید محمدعلی بوترابی 3
1 - دانشکده مهندسی مواد و متالورژی، قطب علمی فناوری آلیاژهای با استحکام بالا، دانشگاه علم و صنعت ایران، تهران، ایران
2 - دانشکده مهندسی مواد و متالورژی، قطب علمی فناوری آلیاژهای با استحکام بالا، دانشگاه علم و صنعت ایران، تهران، ایران
3 - دانشکده مهندسی مواد و متالورژی، قطب علمی فناوری آلیاژهای با استحکام بالا، دانشگاه علم و صنعت ایران، تهران، ایران
کلید واژه: پایداری حرارتی, انرژی فعالسازی, شیشهی فلزی حجمی, شیشهی فلزی پایهزیرکونیم,
چکیده مقاله :
پایداری حرارتی شیشههای فلزی حجمی (BMGs) Zr56Co28Al16، Zr56Co24Ag4Al16 و Zr56Co22Cu6Al16 بهوسیله گرماسنجی تفاضلی روبشی (DSC) در چهار نرخ گرمایش متغیر K/min10، 20، 30 و 40 ارزیابی شد. تغییر پارامترهای انرژی فعالسازی موثر، انرژی فعال-سازی موضعی، حساسیت دماهای مشخصه به نرخ گرمایش با افزودن عناصر نقره و مس به آلیاژ پایه به همراه آنالیز فازی و ساختاری آنها بررسی شد. تحولات ساختاری و فازی نمونهها توسط آنالیز پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی عبوری (TEM) مطالعه شد. انرژی فعالسازی دماهای مشخصه با مدل کیسینجر و اوزاوا و همچنین وابستگی دماهای مشخصه به تغییرات نرخ گرمایش به کمک قانون تجربی لاسوکا اندازهگیری شدند. نتایج نشان داد که انرژی فعالسازی دماهای انتقال شیشه، جوانهزنی مرحله اول و دوم تبلور در آلیاژ حاوی نقره به ترتیب با kJ/mol 402، 336 و 395 نسبت به آلیاژهای دیگر بیشتر و وابستگی دماهای مشخصه به نرخ گرمایش کمتر است. افزایش پایداری حرارتی آلیاژ آمورف حاوی نقره به دلیل شکلگیری ساختار با چینش فشرده است که حاصل خوشههای مستحکم با نظم کوتاه برد بیستوجهی (ISRO) در داخل ساختار است.
The non-isothermal crystallization kinetics of Zr56Co28Al16, Zr56Co24Ag4Al16 and Zr56Co22Cu6Al16 BMGs were studied by differential scanning calorimetry at the continuous heating rates of 10, 20, 30 and 40 K/min. The crystallization kinetics parameters, including the effective and local activation energies corresponding to the characteristic temperatures, sensitivity of the characteristic temperatures to the heating rate were investigated. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate the glassy alloys structure. The activation energies of characteristic temperatures were obtained by Kissinger and Ozawa methods. Also, the heating rate sensitivity of characteristic temperatures was determined by Lasoca method. The Ag-bearing Zr-based BMG presented higher activation energies with values of Eg=402, EX1= 336 and EX2= 395 kJ/mol and lower heating rate sensitivity in regard to characteristic temperatures, indicating a higher stabilization of the supercooled liquid, which can be correlated with the existence of strong icosahedral short range order (ISRO) clusters in the structure
[1] م. صالحی، "بررسی خواص و ساختار آلیاژ پایه Al-Ni با ایجاد رسوبات نانومتری در فرآیند انجماد سریع و مطالعه روش متراکم سازی گرم"، دانشگاه علم و صنعت ایران، 1392.
[2] Y. D. Sun, P. Shen, Z. Q. Li, J. S. Liu, M. Q. Cong & M. Jiang, “Kinetics of crystallization process of Mg-Cu-Gd based bulk metallic glasses”, J. Non. Cryst. Solids, Vol. 358, No. 8, pp. 1120–1127, 2012.
[3] L. Hu & F. Ye, “Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass”, J. Alloys Compd., Vol. 557, pp. 160–165, 2013.
[4] M. Salehi, S. G. Shabestari & S. M. A, Boutorabi, “Nano-crystal development and thermal stability of amorphous Al-Ni-Y-Ce alloy”, J. Non. Cryst. Solids, Vol. 375, pp. 7–12, 2013.
[5] W. Zhou, J. Hou, Z. Zhong & J. Li, “Effect of Ag content on thermal stability and crystallization behavior of Zr–Cu–Ni–Al–Ag bulk metallic glass”, J. Non. Cryst. Solids, Vol. 411, pp. 132–136, 2015.
[6] J. Wu, Y. Pan, J. Huang & J. Pi, “Non-isothermal crystallization kinetics and glass-forming ability of Cu-Zr-Ti-In bulk metallic glasses”, Thermochim. Acta, Vol. 552, pp. 15–22, 2013.
[7] Z. F. Yao, J. C. Qiao, C. Zhang, J. M. Pelletier & Y. Yao, “Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region (SLR) of (Ce0.72Cu0.28)90 - XAl10Fex (x = 0, 5 or 10) bulk metallic glasses”, J. Non. Cryst. Solids, Vol. 415, pp. 42–50, 2015.
[8] A. Takeuchi & A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying Element”, Mater. Trans., Vol. 46, No. 12, pp. 2817–2829, 2005.
[9] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang& A. Makino, “Alloy designs of high-entropy crystalline and bulk glassy alloys by evaluating mixing enthalpy and delta parameter for quinary to decimal equi-atomic alloys”, Mater. Trans., Vol. 55, No. 1, pp. 165–170, 2014.
[10] F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema & A. K. Niessen, “Cohesion in metals: transition metal alloysˮ, North Holland Physics Publishing, a Division of Elsevier Scinece Publishers B.V.: Amsterdam, The Netherlands, 1988.
[11] J. Basu & S. Ranganathan, “Bulk metallic glasses: A new class of engineering materials”, Sadhana, Vol. 28, No. 3–4, pp. 783–798, 2003.
[12] N. Hua & W. Chen, “Enhancement of glass-forming ability and mechanical property of Zr- based Zr-Al-Ni bulk metallic glasses with addition of Pd”, J. Alloys Compd., Vol. 693, pp. 816–824, 2017.
[13] Z. W. Zhu, L. Gu, G. Q. Xie, W. Zhang, A. Inoue, H. F. Zhang & Z. Q. Hu, “Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses”, Acta Mater., Vol. 59, No. 7, pp. 2814–2822, 2011.
[14] E. V. Goncharova, R. A. Konchakov, A. S. Makarov, N. P. Kobelev & V. A. Khonik, “On the nature of density changes upon structural relaxation and crystallization of metallic glasses”, J. Non. Cryst. Solids, Vol. 471, No. March, pp. 396–399, 2017.
[15] M. Lasocka, “The effect of scanning rate on glass transition temperature of splatcooled Te85Ge15”, Mater. Sci. Eng, Vol. 23, pp. 173–177, 1975.
[16] Y. Z. Yue, “Characteristic temperatures of enthalpy relaxation in glass”, J. non Cryst. solid, Vol. 354, pp. 1112–1118, 2008.
[17] H. E. Kissinger, “Reaction kinetics in differential thermal analysis”, Anal. Chem, Vol. 29, pp. 1702–1704, 1957.
[18] T. Ozawa, “Kinetic analysis of derivative curves in thermal analysis”, J. Therm. Anal, Vol. 2, pp. 301–305, 1970.
[19] X. Hu, J. Qiao, J. M. Pelletier & Y. Yao, “Evaluation of thermal stability and isochronal crystallization kinetics in the Ti40Zr25Ni8Cu9Be18 bulk metallic glass”, J. Non. Cryst. Solids, Vol. 432, pp. 254–264, 2015.
[20] L. Bing, L. Yanhong, Y. Ke, L. Jinshan & F. Xinhui, “Effect of yttrium addition on the non-isothermal crystallization kinetics and fragility of Cu-Zr-Al bulk metallic glass”, Thermochim. Acta, Vol. 642, pp. 105–110, 2016.
[21] S. Cheng, C. Wang, M. Ma, D. Shan & B. Guo, “Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy”, Thermochim. Acta, Vol. 587, pp. 11–17, 2014.
[22] W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He & E. Ma, “Icosahedral short-range order in amorphous alloys”, Phys. Rev. Lett., Vol. 92, No. 14, pp. 145502–1, 2004.
[23] Z. P. Lu & C. T. Liu, “Role of minor alloying additions in formation of bulk metallic glasses: A review”, J. Mater. Sci., Vol. 39, No. 12, pp. 3965–3974, 2004.
[24] T. Egami, “Atomistic mechanism of bulk metallic glass formation”, J. Non. Cryst. Solids, Vol. 317, No. 1–2, pp. 30–33, 2003.
_||_