سنتز گرافن به روش لیزر به منظور ساخت ابرخازن های الکتروشیمیایی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدشهاب خامنه اصل 1 * , مجید نامدار حبشی 2
1 - عضو هیات علمی گروه مهندسی مواد، دانشگاه تبریز
2 - دانشگاه تبریز
کلید واژه: سنتز, گرافن, روش نوشتن لیزری, روش هامرز, ابر خازن,
چکیده مقاله :
در این کار پژوهشی تکنیک نوشتن لیزر برای سنتز گرافن روی سطح یک دیسک و ساخت ابرخازن های گرافن مورد توجه قرار گرفته است. برای اینکار، نخست به روش هامرز، گرافیت در یک محیط اسیدی شامل سدیم نیترات، پتاسیم پرمنگنات و اسید سولفوریک به اکسید گرافن تبدیل شد. برای همگن سازی محلول اکسید گرافن از دستگاههای سانتریفیوژ و التراسونیک استفاده شد. محلول همگن اکسید گرافن روی سطح دیسک های خاص اعمال و مجموعه در دمای محیط خشک شد. برای احیای اکسید گرافن و تبدیل آن به گرافن از یک لیزر مناسب، با الگوی برنامه نویسی خاص ابرخازن استفاده شد. لیزر با اعمال یک انرژی به اندازه فرکانس تشدید پیوند گرافن و اکسیژن، اتصال را شکست و عمل کاهش و رسیدن به گرافن انجام شد. در این بررسی عمل سنتز گرافن و اعمال الگوی خاص ابرخازن در یک مرحله انجام شد که این بزرگترین حسن روش نوشتن لیزری گرافن است. در بررسی حاضر از میکروسکوپ الکترونی عبوری جهت بررسی ساختار لایه ای اکسید گرافن ، از میکروسکوپ الکترونی روبشی برای مطالعات ریزساختار، از 2 آزمون چرخه ولتومتری و آزمایشات شارژ/دشارژ گالوانواستاتیکی برای مطالعه عملکرد ابرخازن، از طیفبینی فوتوالکترون پرتو ایکس برای بررسی عناصر موجود در لایه اعمال شده روی دیسک و از اسپکتروسکوپی رامان برای بررسی کیفیت گرافن استفاده شد.
In this research work, laser scribed technique has been regarded to synthesize graphene on the surface of a DVD and manufacture graphene super capacitors. For this purpose, first, by Hummers method, graphite was converted to graphene oxide (GO) in an acidic environment containing Sodium nitrate, Potassium permanganate and sulfuric acid. Centrifuges and ultrasonic devices were utilized for the homogenization of graphene oxide solution. GO homogeneous solution was applied on the surface of specific DVDs and the set was dried at room temperature. For GO reduction and transform it into graphene, a suitable laser, with programming of super capacitor particular pattern was used. By applying an energy with the amount of resonance frequency of graphene and oxygen bond, the laser broke the connection and the reduction action and reaching to graphene was done. In this study, the process of graphene synthesis and applying the super capacitor specific pattern were carried out in single step that is the biggest advantage of laser scribed graphene (LSG) method. In present study, TEM was utilized to examine the layered structure of GO, SEM was used for microstructural studies, two tests of cyclic voltammetry (CV) and galvanostatic charge/discharge (CC) were applied to study the performance and power of energy storage in super capacitors, the XPS was used to investigate elements present in the layer applied on DVD, and the Raman spectroscopy was applied to investigate the quality of prepared graphene through studying G and D peaks.
[1] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna & P. Simon, “Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbonˮ, Nature nanotechnology, Vol. 5, No. 9, pp. 651-654, 2010.
[2] س. ح. دانشمند، م.ذاکری، ع. محمد بیگی و ع. نظری، "تاثیر گرافن بر خواص مکانیکی نانوکامپوزیت مس/گرافن"، فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 141-148، تابستان 1394.
[3] ا. اسحاقی، ف. مجیری، ا. کرمی و ا. ابراهیم زاده، "اثر اعمال نانو فیلم کربن شبه الماسی بر بازدهی سلولهای خورشیدی سیلیکونی"، فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 9-15، تابستان 1394.
[4] J. Chmiola, C. Largeot, P. L. Taberna, P. Simon & Y. Gogotsi, “Monolithic carbide-derived carbon films for micro-supercapacitorsˮ, Science, Vol. 328, No. 5977, pp. 480-483, 2010.
[5] P. Simon & Y. Gogotsi, “Materials for electrochemical capacitorsˮ, Nature materials, Vol. 7, No. 11, pp. 845-854, 2008.
[6] L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu & L. Xu, “Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performanceˮ, Nature communications, Vol. 2, No. 381, pp. 1-5, 2011.
[7] Sieben, J. Manuel, E. Morallon & D. Cazorla Amorós, “Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methodsˮ, Energy, Vol. 58, pp. 519-526, 2013.
[8] J. Zhang, J. Jiang, H. Lib & X. S. Zhao, “A high-performance asymmetric supercapacitor fabricated with graphene-based electrodesˮ, Energy & Environmental Science, Vol. 4, No. 10, pp. 4009-4015, 2011.
[9] Sun, Yiqing, Q. Wu & G. Shi, “Graphene based new energy materialsˮ, Energy & Environmental Science, Vol. 4, No. 4, pp. 1113-1132, 2011.
[10] S. Stankovich, D. A. Dikin, G. H. B. Dommett & K. M, “Graphene-based composite materialsˮ, nature, Vol. 442, No. 7100, pp. 282-286, 2006.
[11] Miller, R John, R. A. Outlaw & B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performanceˮ, Science, Vol. 329, No. 5999, pp. 1637-1639, 2010.
[12] M. D. Stoller, S. Park, Y. Zhu, J. An & R. S. Ruoff, “Graphene-based ultracapacitorsˮ, Nano letters, Vol. 8, No. 10, pp. 3498-3502, 2008.
[13] Z. Li, Z. Zhou, G. Yun, K. Shi, XiaoweiLv, B. Yang, “A one-pot method for producing ZnO–graphenenanocomposites from graphene oxide for supercapacitorsˮ, ScriptaMaterialia, Vol. 68, No. 5, pp. 301-304, 2013.
[14] D. R. Dreyer, S. Park, C. W. Bielawski & R. S. Ruoff, “The chemistry of graphene oxideˮ, Chemical Society Reviews, Vol. 39, No. 1, pp. 228-240, 2010.
[15] G. Katie, “Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensorsˮ, Nanoscale, Vol. 6, No. 22, pp. 13613-13622, 2014.
[16] M. F. El Kady, V. Strong, S. Dubin & R. B. Kaner, “Laser scribing of high-performance and flexible graphene-based electrochemical capacitorsˮ, Science, Vol. 335, No. 6074, pp. 1326-1330, 2012.
[17] K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson & F. Braet, “Graphene and related materials in electrochemical sensingˮ, Electroanalysis, Vol. 23, No. 4, pp. 803-826, 2011.
[18] El Kady, F. Maher & R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storageˮ, Nature communications, Vol. 4, No. 1475, pp. 1-9, 2013.
[19] El Kady, F. Maher & R. B. Kaner, “Direct laser writing of graphene electronicsˮ, ACS nano, Vol. 8, No. 9, pp. 8725-8729, 2014.
[20] H. Tian, Y. Yang, D. Xie, Y. L. Cui, W. T. Mi, Y. Zhang & T. L. Ren, “Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devicesˮ, Scientific reports, Vol. 4, pp. 3598- 3606, 2014.
[21] S. Abdolhosseinzadeh, H. Asgharzadeh & H. S. Kim, “Fast and fully-scalable synthesis of reduced graphene oxideˮ, Scientific reports, Vol. 5, pp. 10160-10167, 2015.
_||_