بررسی تأثیر سرعت سرد شدن بر ریزساختار و رفتار خوردگی آلیاژ Mg-5Zn-1Y-0.1Ca در محیط شبیهسازی شده بدن
محورهای موضوعی : خوردگی و حفاظت موادحسن جعفری 1 * , سعیده نقدعلی 2
1 - استادیار گروه مواد و متالورژی، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
2 - دانشآموخته کارشناسی ارشد، مهندسی مواد، دانشگاه تربیت دبیر شهید رجایی، تهران
کلید واژه: رفتار خوردگی, آلیاژ منیزیم, سرعت سرد شدن, بیومواد, زیستتخریب پذیر,
چکیده مقاله :
در پژوهش حاضر به بررسی تاثیر سرعت سرد شدن بر ریزساختار و رفتار خوردگی آلیاژ Mg-5Zn-1Y-0.1Ca پرداخته شده است. مطالعه ریزساختار توسط میکروسکوپهای نوری و الکترونی روبشی نشان داد که ریزساختار زمینه آلیاژ، متشکل از دانههای α-Mg، و رسوبات Mg3YZn6 و Ca2Mg6Zn3 با مورفولوژی لایهای که اغلب در مرز دانهها تجمع یافتهاند تشکیل شدهاند. بعلاوه تصاویر بدست آمده از ریزساختار نشان دادند که با افزایش سرعت سرد شدن، پیوستگی رسوبات در مرزهای دانه و مناطق بین دندریتی افزایش مییابد. آزمایشات پولاریزاسیون و غوطهوری نشان دادند که همواره افزایش سرعت سرد شدن، باعث بهبود خواص خوردگی نخواهد شد و به نظر میرسد مقدار بهینهای در سرعت سرد شدن وجود دارد که در آن، سرعت خوردگی کمینه خود را دارد.
Abstract In the present study, the effect of different cooling rate on microstructure and corrosion behavior of Mg-5Zn-1Y-0.1Ca biomedical alloy are investigated. Microstructure observations using optical and scanning electron microscopes showed that the alloy contains α-Mg as the matrix, and Mg3YZn6 and Ca2Mg6Zn3 intermetallic precipitations, having lamellar morphology formed mostly at the grain boundaries. Also microstructure results showed that with increasing cooling rate, the continuity of precipitations increase in grain boundary and inter dendritic zones. The polarization test, as well as the immersion result, confirmed that increasing the cooling rate does not always improve the corrosion properties, and it seems there is an optimal cooling rate resulting in minimum corrosion rate. Abstract: In the present study, the effect of different cooling rate on microstructure and corrosion behavior of Mg-5Zn-1Y-0.1Ca biomedical alloy are investigated. Microstructure observations using optical and scanning electron microscopes showed that the alloy contains α-Mg as the matrix, and Mg3YZn6 and Ca2Mg6Zn3 intermetallic precipitations, having lamellar morphology formed mostly at the grain boundaries. Also mi
[1] R. Erbel, C. D. Mario, J. Bartunek, J. Bonnier, B. d. Bruyne, F. R. Eberli, et al., “Temporary scaffolding of coronary arteries with bio absorbable magnesium stents: a prospective, non-randomized multicenter trialˮ, Lancet, Vol. 369, pp. 1869–1875, 2007.
[2] E. Willbold, A. A. Kaya, R. A. Kaya, F. Beckmann, & F. Witte, “Corrosion of magnesium Alloy AZ31 screws is dependent on the implantation siteˮ, Mater. Sci. Eng. B Adv. Funct. Solid-State Mater, Vol. 176, pp. 1835–1840, 2011.
[3] H. Waizy, J. M. Seitz, J. Reifenrath, A. Weizbauer, F. W. Bach, A. Meyer-Lindenberg, et al., “Biodegradable magnesium implants for orthopedic applicationsˮ, J. Mater. Sci, Vol. 48, pp. 39–50, 2013.
[4] T. Okuma, “Magnesium and bone strengthˮ, ed: Elsevier, 2001.
[5] ا. صیفوری، ش. میردامادی، ع. خاوندی و م. یزدانی، "بررسی رفتار زیست تخریبی و تر شوندگی پوششهای سیلیکاتی ایجاد شده بر روی آلیاژ منیزیم AZ31 بهه روش اکسیداسیون ریز جرقه"، فرآیندهای نوین در مهندسی مواد، سال نهم، شماره دوم، تابستان 1394.
[6] S. Virtanen, “Biodegradable Mg Alloys: Corrosion, Surface Modification, and Biocompatibilityˮ, in Biomedical Applications, ed: pp. 101-125, Springer, 2012,
[7] م. پاکشیر، ر. مدحت و خ. مرشد بهبهانی، "بررسی و مقایسه رفتار خوردگی آلیاژ منیزیم AZ91 ریختگی و تغییر فرم یافته به روش اکستروژن برشی ساده"، فرآیندهای نوین در مهندسی مواد، سال هفتم، شماره سوم، پاییز 1392.
[8] J. C. Gao, W. Sha, L. Y. Qiao & W. Yong, “Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluidˮ, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 588-592, 2008.
[9] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu & W. Ding, “Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solutionˮ, Materials Science and Engineering, Vol. 177B, pp. 395-401, 2012.
[10] B. Zhang, L. Geng & Y. Wang, “Research on Mg-Zn-Ca alloy as degradable biomaterialˮ, ed: INTECH Open Access Publisher, 2011.
[11] F. Rosalbino, S. De Negri, A. Saccone, E. Angelini & S. Delfino, “Bio-corrosion characterization of Mg–Zn–X (X= Ca, Mn, Si) alloys for biomedical applicationsˮ, Journal of Materials Science: Materials in Medicine, Vol. 21, pp. 1091-1098, 2010.
[12] W. Zhang, M. Li, Q. Chen, W. Hu, W. Zhang & W. Xin, “Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applicationsˮ, Materials & Design, Vol. 39, pp. 379-383, 2012.
[13] L. Mao, G. Yuan, S. Wang, J. Niu, G. Wu & W. Ding, “A novel biodegradable Mg–Nd–Zn–Zr alloy with uniform corrosion behavior in artificial plasmaˮ Materials Letters, Vol. 88, pp. 1-4, 2012.
[14] H. Jafari, F. Rahimi & Z. Sheikhsofla, “In vitro corrosion behavior of Mg‐5Zn alloy containing low Y contentsˮ, Materials and Corrosion, 2015.
[15] Z. Xu, C. Smith, S. Chen & J. Sankar, “Development and microstructural characterizations of Mg–Zn–Ca alloys for biomedical applicationsˮ, Materials Science and Engineering, Vol. 176B, pp. 1660-1665, 2011.
[16] A. Banerjee, “Process-Structure Relationships of Magnesium Alloysˮ, The University of Western Ontario, 2013.
[17] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, et al., “Degradable biomaterials based on magnesium corrosionˮ, Current opinion in solid state and materials science, Vol. 12, pp. 63-72, 2008.
[18] L. M. Plum, L. Rink & H. Haase, “The essential toxin: impact of zinc on human healthˮ, International journal of environmental research and public health, Vol. 7, pp. 1342-1365, 2010.
[19] J. Reifenrath, A. Meyer-Lindenberg & D. Bormann, “Magnesium alloys as promising degradable implant materials in orthopaedic research: INTECH, Open Access Publisher, 2011.
[20] Y. Chen, Z. Xu, C. Smith & J. Sankar, “Recent advances on the development of magnesium alloys for biodegradable implantsˮ, Acta biomaterialia, Vol. 10, pp. 4561-4573, 2014.
[21] پ. آ. جی، آلیاژهای سبک: متالورژی فلزات سبک: مرکز انتشارات دانشگاه علم و صنعت ایران، 1379.
[22] G. Levi, S. Avraham, A. Zilberov & M. Bamberger, “Solidification, solution treatment and age hardening of a Mg–1.6 wt.% Ca–3.2 wt.% Zn alloyˮ, Acta Materialia, Vol. 54, pp. 523-530, 2006.
[23] S. Farzadfar, M. Sanjari, I. H. Jung, E. Essadiqi & S. Yue, “Experimental and calculated phases in two as-cast and annealed Mg–Zn–Y alloysˮ, Materials Characterization, Vol. 63, pp. 9-16, 2012.
[24] M. B. Kannan & R. S. Raman, “In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluidˮ, Biomaterials, Vol. 29, pp. 2306-2314, 2008.
[25] D. s. Yin, E. l. Zhang & S. y. Zeng, “Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloyˮ, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 763-768, 2008.
[26] H. Zhou, Y. Wang & Z. D. Liao, “Microstructure and Corrosion Mechanism of as-cast Mg-Zn-Mn-Ca in Hankˮ, Journal of Chongqing University, Vol. 9, pp. 146-150, 2010
_||_