تولید و مشخصهیابی منیزیم سیلیکات مزوحفره جهت کاربردهای رهایش کنترل شده دارو
محورهای موضوعی : بیومواد
1 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: رهایش دارو, ایبوپروفن, منیزیم سیلیکات, مزوحفره,
چکیده مقاله :
در این پژوهش منیزیم سیلیکات مزوحفره به کمک سورفکتانت غیر یونی P123 و به روش سل-ژل تولید شده است. منیزیم سیلیکات درون محیط اسیدی سنتز و به منظور خروج مواد آلی در دمای 550 درجه سانتیگراد تحت عملیات کلسیناسیون قرار گرفت. هدف از این پژوهش، بررسی قابلیت و کاربرد بارگذاری و رهایش کنترل شده داروی ایبوپروفن از ترکیب منیزیم سیلیکات مزوحفره میباشد. همچنین اثر بارگذاری و رهایش دارو بر خواص سطحی از قبیل مساحت سطحی، اندازه و حجم حفرات و نظم حفرات مورد ارزیابی قرار گرفتند. ترکیب تولیدی به وسیله پراش اشعه ایکس (XRD) با زاویه کم و زیاد، آنالیز جذب- واجذب نیتروژن (BET)، میکروسکوپ الکترونی عبوری (TEM)، طیف سنجی فروسرخ (FTIR) و دستگاه طیف سنجی فرابنفش مورد ارزیابی قرار گرفت. نتایج آنالیزهای XRD با زاویه پایین، BET و TEM نشان دادند که ترکیب تولیدی متشکل از شبکه حفرات لولهای با شکل لانه زنبوری و ساختار مزوحفره منظم میباشد که به صورت یکدست و همگن توزیع شدهاند. نتایج BET منیزیم سیلیکات مزوحفره نشان دهنده این است که ترکیب تولیدی دارای مساحت سطحی 504 مترمربع/ گرم با اندازه حفرات 6/4 نانومتر و حجم حفرات 44/0 سیسی/ گرم میباشد و پس از بارگذاری داروی ایبوپروفن، این مقادیر به ترتیب به 225 مترمربع/ گرم، 2/1 نانومتر و 212/0 سیسی/ گرم کاهش یافتهاند. این پژوهش مشخص نمود که منیزیم سیلیکات مزوحفره قابلیت بارگذاری و رهایش داروی ایبوپروفن را داراست و میتواند به عنوان یک سامانه جدید دارورسانی مورد استفاده قرار گیرد.
In the present study, mesoporous magnesium silicate (m-MS) was synthesized via non-ionic surfactant-assisted sol-gel method. The m-MS was produced into an acidic medium and calcined at 550 ºC temperature to remove the organic template (P123). The aim of this study was to evaluate the ability and application of drug loading and controlled release from m-MS. In addition, the effect of drug loading and release on textural properties of m-MS such as surface area, pore diameter and pore volume was investigated. The synthesized compound was studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM) and Uv-vis spectrophotometer. The low angle XRD, BET and TEM results showed that magnesium silicate contained 2D hexagonal honeycomb pore channels with uniform and homogeneously distributed mesopores of the same size. The m-MS demonstrated large specific surface area by about 504 m2/g and after adsorption of ibuprofen, the N2 adsorbed volume decreased obviously, and the corresponding BET surface area, pore size and pore volume changed from the 504 m2/g, 4.6 nm, 0.44 cc/g (550 ºC) to 225 m2/g, 1.2 nm, 0.21 cc/g (550 ºC drug loaded) respectively. This study revealed that m-MS has the ability to drug loading and controlled release of ibuprofen and can be used as a novel drug delivery system.
[1] M. Vallet-Regi, “Bio-ceramics with clinical applicationsˮ, JohnWiley & Sons Ltd., United Kingdom, pp. 343-359, 2014.
[2] I. I. Slowing, B. G. Trewyn, S. Giri & V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applicationsˮ, Adv. Funct. Mater, Vol. 17, pp. 1225–1236, 2007.
[3] M. Itokazu, W. Yang, T. Aoki, A. O. Hara & N. Kato, “Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testingˮ, Biomaterials, Vol. 19, pp. 817–819, 1998.
[4] W. Xia & J. Chang, “Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery systemˮ, J. Controlled Release, Vol. 110, pp. 522–530, 2006.
[5] R. P. Del Real, J. G. C. Wolke & M. Vallet-Regi, “A new method to produce macropores in calcium–phosphate cementsˮ, Biomaterials, Vol. 17, pp. 3673–3680, 2002.
[6] D. Arcos & M. Vallet-Regi, “Bioceramics for drug deliveryˮ, Acta Materialia, Vol. 61, pp. 890–911, 2013.
[7] E. Verron, O. Gauthier, P. Janvier, P. Pilet, J. Lesoeur, B. Bujoli & et al., “In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatiteˮ, Biomaterials, Vol. 31, pp. 7776, 2010.
[8] A. S. Moscofian, C. R. Silva & C. Airoldi, “Stability of layered aluminum and magne-sium organosilicatesˮ, Microporous Mesoporous Mater, Vol. 107, pp. 113, 2008.
[9] S. A. Hassanzadeh-Tabrizi, A. Bigham & M. Rafienia, “Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery systemˮ, Materials Science and Engineering, Vol. 58C, pp. 737–741, 2016.
[10] Z. Wu, T. Tang, H. Guo, S. Tang, Y. Niu, J. Zhang, W. Zhang, R. Ma, J. Su, C. Liu & J. Wei, “In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regenerationˮ, Colloids and Surfaces, Biointerfaces, Vol. 120B, pp. 38–46, 2014.
[11] D. He, W. Dong, S. Tang, J. Wei, Z. Liu, X. Gu, M. Li, H. Guo & Y. Niu, “Tissue engineering scaffolds of mesoporous magnesium silicate and poly(e-caprolactone)–poly (ethylene glycol)–poly (e-caprolactone) compositeˮ, J Mater Sci: Mater Med, Vol. 25, pp. 1415–1424, 2014.
[12] Y. Niu, W. Dong, H. Guo, Y. Deng, L. Guo, X. An, D. He, J. Wei & M. Li, “Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly (ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviorsˮ, International Journal of Nanomedicine, Vol. 9, pp. 2665–2675, 2014.
[13] Rashid, N. H. Daraghmeh, M. M. Al Omari, B. Z. Chowdhry, S. A. Leharne, H. A. Hodali & A. A. Badwan, “Profiles of Drug Substancesˮ, Excipients and Related Methodology, Vol. 36, pp. 241–285, 2011.
[14] M. Molaie, “Colloids: Applications and Remaining Challengesˮ, Journal of Modern Processes in Manufacturing and Production, Vol. 4, No. 1, pp. 5-17, 2015.
[15] M. Oner, E. Yetiz, E. Ay & U. Uysal, “Ibuprofen release from porous hydroxyapatite tabletsˮ, Ceramics International, Vol. 37, pp. 2117–2125, 2011.
[16] M. Manzano, V. Aina, C. O. Arean, F. Balas, V. Cauda, M. Colilla, M. R. Delgado & M. Vallet-Regi, “Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalizationˮ, Chemical Engineering Journal, Vol. 137, pp. 30–37, 2008.
[17] H. Tavakoli, R. Sarraf-Mamoory & A. R. Zarei, “Solvothermal synthesis of copper nanoparticles loaded on multi-wall carbon nanotubes as catalyst for thermal decomposition of ammonium perchlorateˮ, J. Adv. Mater. Process, Vol. 3, pp. 3–10, 2015.
[18] S. A. Hassanzadeh-Tabrizi, “Synthesis and luminescence properties of YAG:Ce nanopowder prepared by the Pechini methodˮ, Adv. Powder Technol, Vol. 23, pp. 324–327, 2012.
[19] S. Shojaei, S. A. Hassanzadeh-Tabrizi & M. Ghashang, “Reverse microemulsion synthesis and characterization of CaSnO3 nanoparticlesˮ, Ceram. Int, Vol. 40, pp. 9609–9613, 2014.
[20] R. Pournajaf, S. A. Hassanzadeh-Tabrizi & M. Jafari, “Reverse microemulsion synthesis of CeO2 nanopowder using polyoxyethylene (23) lauryl ether as a surfactantˮ, Ceram. Int, Vol. 40, pp. 8687–8692, 2014.
[21] L. Gao, J. Sun, L. Zhang, J. Wang & B. Ren, “Influence of different structured channels of mesoporous silicate on the controlled ibuprofen deliveryˮ, Materials Chemistry and Physics, Vol. 135, pp. 786-797, 2012.
[22] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol & T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosityˮ, Pure Appl. Chem, Vol. 57, pp. 603–619, 2005.
[23] ز. سعیدی فر، ا. ع. نوربخش، ر. جواد کلباسی و ا. کرمیان، "سنتز مزوحفره SiC از پیش سازه نانو کامپوزیت MCM-48/ پلی اکریل آمید"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، دوره 8، شماره 4، زمستان، 1393.
[24] س. ع. حسن زاده تبریزی و م. جعفری، "بررسی پارامتر های موثر در سنتز نانو کریستال های اسپینل CoAl2O4 به روش پلی اکریل آمید"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، دوره 9، شماره 3، پاییز، 1394.
[25] P. Horcajada, A. Ramila, J. Perez-Pariente & M. Vallet-Regi, “Influence of pore size of MCM-41 matrices on drug delivery rateˮ, Micropore. Mesopor. Mater, Vol. 68, pp. 105–109, 2004.
_||_