تأثیر کلسیم بر رفتار خوردگی آلیاژ زیستتخریبپذیر Mg-5Zn-1Y
محورهای موضوعی : خوردگی و حفاظت موادفرشته دوست محمدی 1 , حسن جعفری 2
1 - دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
2 - استادیار گروه مواد و متالورژی، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
کلید واژه: خوردگی, ریزساختار, آلیاژ منیزیم, غوطه وری, پولاریزاسیون,
چکیده مقاله :
امروزه آلیاژهای منیزیم به عنوان بایومواد زیستتخریبپذیر نسل جدید، توجه محققین زیادی را به خود جلب کردهاند. در این پژوهش، رفتار خوردگی آلیاژ ریختگی Mg-5Zn-1Y محتوی مقادیر مختلف کلسیم (0، 1/0، 5/0 و 1 درصد وزنی) مورد بررسی قرار گرفته است. ریزساختار آلیاژها با استفاده از میکروسکوپهای نوری و الکترونی روبشی تحت مطالعه قرار گرفت و ترکیب فازهای موجود به کمک پراش اشعه ایکس تعیین شدند. رفتار خوردگی آلیاژهای ریختگی نیز به کمک آزمونهای الکتروشیمیایی پولاریزاسیون و غوطهوری مورد سنجش قرار گرفت. نتایج متالوگرافی نشان داد که ریزساختار آلیاژ Mg-5Zn-1Y شامل زمینه α-Mg و فاز لایهای شکل Mg3YZn6 در مرزدانه میباشد. از طرفی افزودن کلسیم باعث ریز شدن ریزساختار و تشکیل رسوبات پیوسته فاز Ca2Mg6Zn3 در مرزهای دانه میگردد. منحنیهای پولاریزاسیون، منطقه پسیو را نشان ندادند که این امر حاکی از ایجاد پولاریزاسیون فعال میباشد که بیانگر افزایش سرعت خوردگی به دلیل ریز شدن دانهها در اثر افزایش درصد کلسیم میباشد. همچنین نتایج غوطهوری و پولاریزاسیون نشان دادند که آلیاژ Mg-5Zn-1Y-0.1Ca کم-ترین سرعت خوردگی را در بین آلیاژهای دیگر دارد و آلیاژ محتوی مقادیر بیشتر کلسیم به دلیل تشکیل فاز کاتدی Ca2Mg6Zn3 موجب افزایش خوردگی زمینه میگردد.
Today, magnesium alloys as the new generation of biodegradable alloys, have attracted the attention of many researchers. In this research, the corrosion behavior of cast Mg-5Zn-1Y containing different amounts of calcium (0, 0.1, 0.5 and 1 weight percentage) was investigated. The microstructure of the alloys was analyzed using optical and scanning electron microscopes, and the corresponding phases were detected by X-ray diffraction. Corrosion behavior of cast alloys was measured using electrochemical polarization and immersion tests. Metallography analysis revealed that microstructure of the Mg-5Zn-1Y alloy includes α-Mg matrix and Mg3YZn6 lamellar phase formed at the grain boundary. The addition of calcium to the alloy refined the grains and resulted in the formation of continuous Ca2Mg6Zn3 at grain boundaries. No passive zone was detected in polarization curves, meaning domination of active polarization, indicating increased corrosion rate due to grain refinement which can be attributed to calcium addition in the alloy. The polarization and immersion tests results confirmed that the alloy Mg-5Zn-1Y-0.1Ca has the lowest corrosion rates among the investigated alloys, and the more the calcium content, the higher the corrosion rate due to the formation of cathodic Ca2Mg6Zn3 phase.
[1] م. پاکشیر، ر. مدحت و خ. مرشد بهبهانی، "بررسی و مقایسه رفتار خوردگی آلیاژ منیزیم AZ91 ریختگی و تغییرفرم یافته به روش اکستروژن برشی ساده"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره دوم، تابستان 1394.
[2] H. E. Fridrich & L. M. Barry. “Magnesium Technology: Metallurgy, design data, applications”, Springer, ISBN: 978-3-540-20599-9, 2006.
[3] ا. صیفوری، ش. ا. میردامادی، ع. خاوندی و م. یزدانی،" بررسی رفتار زیست تخریبی و تر شوندگی پوششهای سیلیکاتی ایجاد شده بر روی آلیاژ منیزیم AZ31 به روش اکسیداسیون رِیز جرقه"، فرآیندهای نوین در مهندسی مواد، سال هفتم، شماره سوم، پاییز 1392.
[4] M. P. Staiger, A. M. Pietaka, J. Huadmaia & G. Dias “Magnesium and its alloys as orthopedic biomaterials: a review”, Biomaterials, Vol. 27, pp. 1728–34, 2006.
[5] D. Persaud Sharma & A. McGoron, “Biodegradable Magnesium Alloys: A Review of Material Development and Applications”, J Biomim Biomater Tissue Eng, Vol. 12. pp. 25–39, 2012.
[6] H. S. Brar, M. O. Platt, M. Sarntinoranont, P. I. Martin, & M. V. Manuel. “Magnesium as a Biodegradable and Bioabsorbable Material for Medical Implants”, Biomedical Materials and Devices, Vol. 61, pp. 31–34, 2009.
[7] E. J. Poinern, S. V. Brundavanam, D. Fawcett. “Biomedical Magnesium Alloys”, American Journal of Biomedical Engineering, Vol. 2, pp. 218-240, 2012.
[8] N. Nassif & I. Ghayad, “Review Article: Corrosion Protection and surface treatment of Magnesium alloys used for orthopeadic applications”, Advances in Materials Science and Engineering, pp. 1-10, 2013.
[9] M. H. Idris, H. Jafari, S. E. Harandi, M. Mirshahi & S. Koleyni, “Characteristics of As-Cast and Forged Biodegradable Mg-Ca Binary Alloy Immersed in Kokubo Simulated Body Fluid”, Materials and Manufacturing Technologies XIV, Vol. 445, pp. 301-306, 2012.
[10] E. M. García, “Influence of alloying elements on the microstructure and mechanical properties of extruded Mg-Zn based alloys”, Berlin, 2010.
[11] A. M., N. A. Agha, Y. Lu, E. Martinelli, J. Eichler, G. Szakács, C. Kleinhans, R. Willumeit-Römer, U. Schäfer, A. M. Weinberg, “In vitro and in vivo comparison of binary Mg alloys and pure Mg”, Materials Science and Engineering, Vol. 61C. pp. 865-874, 2016.
[12] Y. Kun, l. Chen, J. Zhao, S. Li, Y. Dai, Q. Huang & Z. Yu. “In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composite”, Acta biomaterialia, Vol. 8. pp. 2845-2855, 2012.
[13] Y. Ping, N. F. Li, T. Lei, L. Liu & C. Ouyang, “Effect of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys”, Journal of Material Science: Material in Medicine, Vol. 24, pp. 1365-1373, 2013.
[14] Z. Peng & H. R. Gong, “Phase Stability, mechanical property, and electronic structure of an Mg-Ca system”, Journal of Mechanical Behavior of Biomedical Materials, Vol. 8, pp. 154-164, 2012.
[15] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, Y. Zhang, Y. He, Y. Jiang, & Y. Bian, “Research on an Mg-Zn alloy as a degradable biomaterial”, Acta Biomateriala, Vol. 6, pp. 626-640, 2010.
[16] X. Zhigang, C. Smith, S. Chen & J. Sankar, “Development and microstructural characterization of Mg-Zn-Ca alloys for biomedical applications”, Materials Science and Engineering, Vol. 176B, pp. 1660-1665, 2011.
[17] H. Hendra, “Biodegradable metals: From concept to application”, Springer, 2012.
[18] H. Jafari, F. Rahimi & Z. Sheikhsofla, “In vitro corrosion behavior of Mg-5Zn alloy containing low Y contents”, Materials and Corrosion, Vol. 67, pp. 396-405, 2016.
[19] L. Nan & Y. Zheng, “Novel magnesium alloys developed for biomedical application: A review”, Journal of Materials Science and Technology, Vol. 29, pp. 489-502, 2013.
[20] S. Eslami Harandi, M. H. Idris & H. Jafari, “Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy”, Material and design, Vol. 32, pp. 2596-2603, 2011.
[21] Q. Fengxiang, G. Xie, Z. Dan, S. Zhu & I. Seki, “Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys”, Intermetallics, Vol. 42, pp. 9-13, 2013.
[22] L. B. Tong, M. Y. Zheng, S. W. Xu, X. S. Hu, K. Wu, S. Kamado, G. J. Wang & X. Y. Lv, “Room temperature compressive deformation behavior of Mg-Zn-Ca alloy processed by equal channel angular pressing”, Material Science and Engineering, Vol. 528A, pp. 672-679, 2010.
[23] Z. Baoping, Y. Hou, X. Wang, Y. Wang & L. Geng. “Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions”, Materials Science and Engineering, Vol. 31C, pp. 1667-1673, 2011.
[24] Y. Z. Du, X. G. Qiao, M. Y. Zheng, D. B. Wang, K. Wua, & I. S. Golovin, “Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys”, Materials and Design, Vol. 98, pp. 285–293, 2016.
[25] M. B. Yang, D. Y. Wu, M. D. Hou & F. S. Pan, “As-cast microstructures and mechanical properties of Mg−4Zn−xY−1Ca (x=1.0, 1.5, 2.0, 3.0) magnesium alloys”, Trans. Nonferrous Met. Soc. China, Vol. 25, pp. 721−731, 2015.
[26] X. U. Hong, Z. Xin, Z. Kui, S. Yang & R. Jiping, “Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy”, Journal of Rare Earths, Vol. 34, pp. 315, 2016.
_||_