بررسی فعالیت کاتالیستی نانو پوشش اگزالات مس بر روی پارامترهای ترمودینامیکی تجزیه حرارتی آمونیم پرکلرات
محورهای موضوعی : عملیات حرارتیمرجان تحریری 1 * , محمد مهدوی 2 , حسین فرخ پور 3
1 - دانشجو /دانشگاه صنعتی مالک اشتر
2 - استاد / دانشگاه صنعتی مالک اشتر
3 - استاد/دانشگاه صنعتی اصفهان
کلید واژه: آمونیم پرکلرات, پوشش دهی, اگزالات مس,
چکیده مقاله :
برای بهبود فرایند تجزیه حرارتی آمونیوم پرکلرات (جهت اصلاح و بهبود سرعت سوزش پیشرانه ها)، نانو اگزالات مس بر روی آمونیوم پرکلرات به روش سل- ژل پوشش داده شد. برای بررسی فرایند پوشش دهی اگزالات مس بر روی آمونیوم پرکلرات و تغییرات رفتار تجزیه حرارتی آمونیوم پرکلرات در حضور نانو ذرات اگزالات مس به ترتیب از تصاویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز حرارتی (TG/DSC) استفاده شد. نتایج بدست آمده از آنالیزهای حرارتی نشان داد که، پوشش دادن نانو ذرات اگزالات مس بر روی آمونیوم پرکلرات علاوه بر کاهش دمای تجزیه حرارتی از C º 422 به C º299 ، سبب ادغام پیک های تجزیه آمونیوم پرکلرات(در مقایسه با آمونیوم پرکلرات خالص) شده است. همچنین برای بررسی اثر نانو کاتالیست بر روی پارامترهای سینتیکی و ترمودینامیکی تجزیه حرارتی آمونیم پرکلرات، از روش مستقل از مدل به نام اوزاوا-فلاین-وال (OFW) استفاده شد. ازاینرو، مشاهده شد این نانو کاتالیست سبب کاهش مقادیر انرژی فعالسازی، عامل فاکتور فرکانس و پارامترهای ترمودینامیکی در درجات تبدیل مختلف به ترتیب 2/0، 4/0، 6/0 و 8/0شده است، همچنین موجب کاهش پارامترهای ترمودینامیکی در فرایند تجزیه حرارتی آمونیوم پرکلرات می شود.
To improve the process of thermal decomposition of ammonium perchlorate (for improving and modification propellant burning rate), the copper oxalate was coated by ammonium perchlorate through sol-gel method. Scanning electron microscopy (SEM) and thermal analysis(TG/DSC) were used for coating analysis of the copper oxalate on ammonium perchlorate and behavior changes of thermal decomposition of ammonium perchlorate in the presence of nano copper oxide made of nano copper oxalate respectively. The results of catalytic thermal decomposition of ammonium perchlorate shown that the cover of copper oxalate nanoparticles has a good effect on the thermal decomposition of ammonium perchlorate and the thermal decomposition temperature of ammonium perchlorate reduced from 422 ºC to 299 ºC. In addition, the thermal decomposition peaks of ammonium perchlorate (compared to thermal decomposition of pure ammonium perchlorate) were integrated. In order to evaluation of the effect of nano-catalyst on the thermodynamic and kinetic parameters one of the model-free methods as Ozawa - Flynn - Wall (OFW) equation was used. As result, it was observed that nano-catalyst reduced the activation energy, the frequency factor and thermodynamic parameters in different conversion rates 0.2, 0.4, 0.6 and 0.8, respectively.
[1] P. N. Kadiresh & B. T. N. Sridhar, “Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging”, Journal Thermal Analysis and Calorimetry, Vol. 100, pp. 331-335, 2010.
[2] John & J. Christopher, “Chemistry of pyrotechnics basic principles and theory”, Chromatographia, Vol. 75, pp. 79-80, 2012.
[3] J. P. Agrawal, “High Energy Materials: Propellants, Explosives and Pyrotechnics”, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, Vol. 5, pp. 464-494, 2010.
[4] V. V. Boldyrev, “Review: Thermal Decomposition of Ammonium Perchlorate”, Thermochimica Acta, Vol. 443, pp. 1-36, 2006.
[5] S. Chaturvedi & P. N. Dave, “A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate”, Journal of Saudi Chemical Society, Vol. 17, pp. 135-149, 2013.
[6] E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh & R. Rahimi, “Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate”, Powder Technology, Vol. 217, pp. 330-339, 2012.
[7] Sh. Chaturvedi, P. N. Dave & N. Patel, “Nano-alloys: Potential catalyst for thermaldecomposition of Ammounium Perchlorate, Synthesis and Reactivity in Inorganic”, Metal-Organic and Nano-MetalChemistry, Vol. 10, pp. 1080-1091, 2013.
[8] M. Zou, X. Jiang, L. Lu & X. Wang, “Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate”, Journal of Hazardous Materials, Vol. 225, pp. 124-130, 2012.
[9] E. Ayoman & S. Gh. Hosseini, “Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particlesˮ, J Therm Anal Calorim, Vol. 123, pp. 1213–1224, 2016.
[10] Eslami, S. G. Hosseini & M. Bazrgary, “Improvement of thermal decompositionproperties ofammonium perchlorate particles using some polymer coatingagents”, Journal Thermal Analysis and Calorimetry, Vol. 113, pp. 721-730, 2013.
[11] Zh. Zhoua, Sh. Tian, D. Zeng, G. Tang & Ch. Xie, “MOX (M = Zn, Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate”, Journal of Alloys and Compounds, Vol.513, pp. 213-219, 2012.
[12] L. J. Chen, G. S. Li & L. P. Li, “CuO Nanocrystals in thermal decomposition of Ammonium Perchorate Stabilization, structural characterization and catalytic activities”, Journal Thermal Analysis and Calorimetry, Vol. 2, pp. 581-587, 2008.
[13] W. Jun, H. Shanshan, L. Zhanshuang, J. Xiaoyan, Z. Milin & J. Zhaohua, “Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate”, Colloid Polymer Science, Vol. 20, pp. 853-858, 2009.
[14] N. B. Singh & A. K. Ojha, “Co-precipitation of a mixture of CuO and Cr203 through NaN03-KN03 eutectic mixture and its catalytic activity”, Indian Journal of Chemistry, Vol. 6, pp. 2475-2479, 2002.
[15] S. Satyawati, L. Joshi, R. Prajakta, L. Patil & V. N. Krishnamurthy, “Thermal Decomposition of Ammonium Perchlorate in thePresence of Nanosized Ferric Oxideˮ, Defence science journal, Vol. 58, pp. 721-727, 2008.
[16] Said, M. M. Abd, E. L. Wahab, S. A. Soliman & M. N. Goda, “Synthesis and Characterization of Nano CuO-NiO Mixed Oxides”, Nuclear Science and Engineering, Vol. 2, pp. 17-28, 2014.
[17] G. Singh, I. P. Kapoor, S. Dubey & R. P. Srivastava, “Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants”, Thermochimica Acta, Vol. 511, pp. 112-118, 2010.
[18] N. Christensen, B. Lebech, N. H. Andersenc & J. C. Griveld, “The crystal structure of paramagnetic copper(II) oxalate (CuC2O4): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites”, Dalton Transactions, Vol. 43, pp. 154-167, 2014.
[19] H. Schmittler, Zentralinstitut F. Phys. Chemie, Dt. Akad. Wiss. Berlin, Germany, Private Communication, 1969.
[20] S. K. Zaware & S. S.Jadhav, “Kinetics and mechanism of thermal decomposition of binary mixture of barium oxalate and copper oxalate in the (1:2) mole ratio”, Research Journal of Pharmaceutical, Biological and Chemical Sciences, Vol. 4, pp. 760-776, 2013.
[21] Y. Zongxue, C. Lifen, L. Lude, Y. Xujie & W. Xin, “DSC/TG-MS Study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4”, Chinese Journal of Catalysis, Vol. 30, pp. 19-23, 2009.
[22] ا. ایومن، م. تحریری و م. تحریری، "بررسی فعالیت کاتالیزوری نانو ذرات اکسید سریم بر تجزیه گرمایی آمونیم پرکلرات"، فرآیندهای نوین در مهندسی مواد، در دست چاپ.
[23] M. W. Evans, R. B. Beyer & L. Mc Culley, “Initiation of deflagration waves at surfaces of ammonium perchlorate–copper chromite–carbon pellets”, Journal of Chemical Physics, Vol. 40, pp. 2431-2438, 1964.
[24] Sh. Zhao & D. Ma, “Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate”, Journal of Nuclear Materials, Vol. 3, pp. 5-12, 2010.
[25] Y. Wang, X. Xia, J. Zhu, Y. Li, X. Wang & X. Hu, “Catalytic activity of nanometer-sized CuO/Fe2O3 on thermal decomposition of AP and combustion of AP-based propellant”, Combustion Science and Technology, Vol. 183, pp. 154-162, 2011.
[26] Sh. Chaturvedi & P. N. Dave, “Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate”, Defence science journal, Vol. 11, pp. 1-27, 2011.
[27] B. Jankovi, “Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods”, Chemical Engineering Journal, Vol. 139, pp. 128-135, 2008.
[28] N. Sbirrazzuoli, L. Vincent, A. Mija & N. Guigo, “Integral, Differential and Advanced Isoconversional Methods ComplexMechanisms and Isothermal Predicted Conversion–Time Curves”, Chemometrics and Intelligent Laboratory, Vol. 96, pp. 219-226, 2009.
[29] S. Vyazovkin & C. A. Wight, “Isothermal and Nonisothermal Kinetics of Reactions of Solids”, Journal Physical Chemistry, Vol. 17, pp. 407-433, 1998.
[30] Eslami, S. G. Hosseini & V. Asadi, “The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles”, progress in organic coating, Vol. 65, pp.65, 2009.
[31] P. S. Low, J. L. Bada & G. N. Somero, “Temperature Adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation”, Proceedings of the National Academy of Sciences, Vol. 70, pp. 430-432, 1973.
[32] H. Zarrok, A. Zarrouk, R. Salghi, M. Assouag, B. Hammouti, H. Oudda1, S. Boukhris, S. S. Deyab & I. Warad “Inhibitive properties and thermodynamic characterization of quinoxaline derivative on carbon steel corrosion in acidic medium”,Der Pharmacia Lettre, Vol. 5, pp. 43-53, 2013.
[33] K. J. Laidler, “Chemical Kinetics”, 1987.
[34]P. W. Atkins & J. D. Paula, Physical Chemistry, 8th Ed., Freeman, New York, 2006.
_||_