بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیست فعال 45S5 و هیدروکسی آپاتیت(HA) به منظور استفاده در پیچ های تداخلی قابل جذب
محورهای موضوعی : بیوموادمحمد خورسندقاینی 1 , علیرضا صادقی اول شهر 2 * , سمیرا نوخاسته 3 , امیر مهدی مولوی 4 , حسین امینی مشهدی 5
1 - پژوهشگر، گروه پژوهشی مواد، سازمان جهاد دانشگاهی خراسان رضوی
2 - عضو هیئت علمی، گروه پژوهشی مواد، سازمان جهاد دانشگاهی خراسان رضوی
3 - پژوهشگر، گروه پژوهشی مواد، سازمان جهاد دانشگاهی خراسان رضوی
4 - پژوهشگر، گروه پژوهشی مواد، سازمان جهاد دانشگاهی خراسان رضوی
5 - عضو هیئت علمی، گروه پژوهشی مواد، سازمان جهاد دانشگاهی خراسان رضوی
کلید واژه: هیدروکسی آپاتیت, شیشه زیست فعال, پیچ قابل جذب, کامپوزیت ارتوپدی, پلی لاکتیک اسید,
چکیده مقاله :
در ساخت کاشتنی های پزشکی جایگزینی فلزات با پلیمرهای قابل جذب نتایج بسیار امیدوار کننده ای را به همراه داشته است. استفاده از پلیمرها خود دارای مشکلاتی است از جمله عدم قابلیت استخوان زایی و یکپارچگی با بافت اطراف، ایجاد واکنش های جسم خارجی، کاهش pH محیط ناشی از محصولات تخریب که میتواند منجر به افزایش واکنشهای التهابی ناخواسته در قسمت مربوطه گردد و در نهایت خواص مکانیکی ضعیفتر در مقایسه با انواع فلزی. برای رفع این مشکلات استفاده از کامپوزیت های پلیمری حاوی ذرات افزودنی زیست فعال بسیار مورد توجه قرار گرفته است. در طرح حاضر جهت ساخت پیچ های کامپوزیتی پلی لاکتیک اسید از ذرات شیشه زیست فعال 45S5 و نیز ذرات سرامیکی هیدروکسی آپاتیت استفاده شد. خصوصیات حرارتی و ریز ساختار کامپوزیت های حاصله به کمک آزمون های آنالیز حرارتی افتراقی( (DTA، وزن سنجی حرارتی(TG)، میکروسکوپ الکترونی روبشی (SEM) و سنجش اندازه ذرات (PSA) مورد بررسی قرار گرفت. همچنین به منظور بررسی میزان فعالیت استخوان سازی نمونهها از آزمونهای رنگ آمیزی آلیزارین قرمز و آلکالین فسفاتاز(ALP) استفاده شد و ارزیابی سمیت سلولی به کمک آزمون MTT صورت پذیرفت. در قیاس با نمونه پلیمری پلی لاکتیک اسید، پایداری حرارتی کامپوزیت پلی لاکتیک اسید با ذرات هیدروکسی آپاتیت افزایش و نمونههای پلی لاکتیک اسید با شیشه 45S5 کاهش نشان دادند. نتایج حاصل از آزمونهای سلولی حاکی از عدم سمیت و فعالیت استخوانسازی مناسب در هر دو گروه کامپوزیت میباشد.
Replacement of metals with bioabsorbable polymers has shown promising results for fabrication of biomedical implants. But polymers themselves have some restrictions such as inability in osteoconduction and integration with surrounding tissue, induce foreign body reactions, reducing of pH by degradation products which can results in unwanted inflammatory reactions in related place, and weak mechanical properties in compare to metallic types. In order to alleviate these problems using of polymeric composites including bioactive particles is taken into consideration. In the present work 45S5 bioactive glass and hydroxyl apatite (HA) ceramic particles were used for fabrication of poly(L-Lactic acid) (PLLA) composite screws. Microstructure and thermal properties of produced samples were evaluated by differential thermal analysis (DTA), thermogravimetry (TG), scanning electron microscopy (SEM) and particle size analysis (PSA). Also for evaluation of osteogenic activity of produced samples, alkaline phosphatase (ALP) and Alizarin Red Staining assays were carried out and cytotoxicity was conducted through MTT assay. In compare to PLLA screws, PLLA/HA and PLLA/45S5 composites showed more and less thermal stability respectively. The results of cell analysis assays showed no cytotoxicity and both composites revealed proper osteogenesis potentials.
[1] P. R Kurzweil, A. D. Frogameni & D. W. Jackson, “Tibial interference screw removal following anterior cruciate ligament reconstruction”, Arthrosc. J. Arthrosc. Relat. Surg, Vol. 11, No. 3, pp. 289–91, 1995.
[2] F. J. Buchanan, “Degradation Rate of Bioresorbable Materialsˮ, prediction and evaluation, CRC Press, Washington, DC, 2008.
[3] L. Cao, W. Weng, X. Chen, Y. Ding, Y. Yan, H. Li & et al., “Development of degradable and bioactive composite as bone implants by incorporation of mesoporous bioglass into poly(l-lactide)”, Compos. Part B Eng, Vol. 77, pp. 454–61, 2015.
[4] E. Castro Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang & R. Auras, “Poly (lactic acid)—Mass production, processing, industrial applications, and end of life”, Adv. Drug Deliv. Rev, 2016.
[5] F. Ravari, A. Mashak, M. Nekoomanesh & H. Mobedi, “Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): Effect of l-lactide dimer” , Polym. Bull, Vol. 70, No. 9, pp. 2569–86, 2013.
[6] فرنوش. ح، "رفتار الکتروشیمیایی و چسبندگی پوشش های الکتروفورتیک نانوساختار "HA-TiO2، فرآیندهای نوین در مهندسی مواد، شماره 1، صفحات 71-89، 1395.
[7] ا. یزدانی چم زینی، م. رفیعی نیا، ب. موحدی، و ح. صالحی، "سنتز و رزیابی سمیت سلولی نانوالیاف شیشه ی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"، فرآیندهای نوین در مهندسی مواد، شماره سه، صفحات 145-154، 1394.
[8] K. Chrissafis & D. Bikiaris, “Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers”, Thermochim. Acta, Vol. 523, No. 1–2, pp. 1–24, 2011.
[9] A. Larrañaga & J. R. Sarasua, “Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters”, Polym. Degrad. Stab, Vol. 98, No. 3, pp. 751–8, 2013.
[10] Y. Ramot, M. H. Zada, A. J. Domb & A. Nyska, “Biocompatibility and safety of PLA and its copolymers”, Adv. Drug Deliv. Rev, 2016.
[11] A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Z. Hong & J. F. Mano, “Polymer/bioactive glass nanocomposites for biomedical applications: A review”, Compos. Sci. Technol, Vol. 70, No. 13, pp. 1764–76, 2010.
[12] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli & J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review” , Polym. Degrad. Stab, Vol. 95, No. 11, pp. 2126–46, 2010.
[13] H. Deplaine, J. L. K. Ribelles G. G. Ferrer, “Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) - Hybrid membranes”, Compos. Sci. Technol, Vol. 70, No. 13, pp. 1805–12, 2010.
[14] K. Kesenci, L. Fambri, C. Migliaresi & E. Piskin, “Preparation and properties of poly(L-lactide)/hydroxyapatite composites”, J. Biomater. Sci. Polym. Ed, Vol. 11, No. 6, pp. 617–32, 2000.
[15] J. J. Blaker, A. Bismarck, A. R. Boccaccini, A. M. Young & S. N. Nazhat, “Premature degradation of poly(α-hydroxyesters) during thermal processing of Bioglass®-containing composites”, Acta Biomater, Vol. 6, No. 3, pp. 756–62, 2010.
[16] N. Ignjatovic, E. Suljovrujic, J. Budinski-Simendic, I. Krakovsky & D. Uskokovic, “Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics”, J. Biomed. Mater. Res. - Part B Appl. Biomater, Vol. 71, No. 2, pp. 284–94, 2004.
[17] F. D. Kopinke, M. Remmler, K. Mackenzie, M. Möder O. Wachsen, “Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid)”, Polym. Degrad. Stab, Vol. 53, No. 3, pp. 329–42, 1996.
[18] L. S. Kaplow, “A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow”, Blood, Vol. 10, No. 10, pp. 1023–9, 1955.
[19] M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan & S. Ramakrishna, “The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering”, Bone, Vol. 45, No. 1, pp. 4–16, 2009.
[20] J. E. Coleman, “Structure and Mechanism of Alkaline Phosphatase”, Annu. Rev. Biophys. Biomol. Struct, Vol. 21, No. 1, pp. 441–83, 1992.
_||_