ساخت پیش سازه متخلخل TiC با روش ریخته گری ژلی به منظور فرآوری مکس فاز Ti3SiC2 از طریق مذاب خورانی پیش سازه
محورهای موضوعی : سنتز موادحمزه فراتی راد 1 * , حمیدرضا بهاروندی 2 , محمد قنادی مراغه 3
1 - دانشگاه مالک اشتر
2 - دانشگاه مالک اشتر
3 - تهران- سازمان انرژی اتمی ایران
کلید واژه: کاربید تیتانیوم", مکس فاز Ti3SiC2", ریخته گری ژلی", مذاب خورانی,
چکیده مقاله :
ترکیب سهتایی Ti3SiC2 یک نمونه از موادی است که ویژگیهای فلزات و سرامیکها را باهم نشان میدهند. شبیه فلزات این ترکیب یک ماده هادی حرارت و الکتریسیته است و مستعد به شوک حرارتی نیست و در دماهای بالا ویژگیهای پلاستیکی نشان میدهد. هنگامیکه به عنوان یک سرامیک مورد توجه قرار میگیرد، این ماده صلب، سبک و مقاوم در برابر خزش و خستگی است و استحکام خود را تا دماهای بالا حفظ میکند. در این مقاله قطعات Ti3SiC2 از طریق مذاب خورانی مایع سیلیکون به درون پیشسازههای متخلخل TiC سنتز میشوند. پودرهای خلوص بالای TiC و Si با نسبتهای مولی 3TiC/(1+x) Si (با x برابر با 30/0، 50/0 و 1) به عنوان مواد اولیه مورد استفاده قرار گرفتند. قرص سیلیکون به عنوان منبع فلز مذاب در بالای نمونهها قرار داده میشود. تشکیل فاز و ریزساختار به وسیله XRD و SEM مجهز به آنالیز عنصری EDS مورد بررسی قرار گرفت. نتایج نشان داد که مقدار سیلیکون اضافی 50 درصد منجر به تشکیل Ti3SiC2 با خلوص 92 درصد میشود. با افزایش مقدار سیلیکون اضافی تا 100 درصد، شرایط برای تشکیل فاز ثانویه SiC مساعد میشود. همچنین افزایش مقدار سیلیکون اضافی منجر به تشکیل مکس فاز Ti3SiC2 با مورفولوژی ستونی میشود.
The ternary compound Ti3SiC2 is a representative of materials that exhibit both metals and ceramics characteristics. Similar to metals, this compound is electrical and thermal conductive material, not susceptible to thermal shock and shows plastic properties at high temperature. When considering as a ceramic, it is elastically rigid, lightweight, creep and fatigue resistant and maintains their strengths to high temperatures. In this paper, T3SiC2 bulks have been synthesized by infiltrating Si liquid into porous TiC preforms. High-purity TiC and Si powders with molar ratios of 3TiC:(1 + x)Si (where x = 0.30, 0.50, 1.00) were used as starting powders. Silicon pellets were placed at the top of the precursor pellets as a liquid source. The phase formation and microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) system. The results demonstrated that the 50 percent extra silicon results to formation of Ti3SiC2 with 92 wt.% purity. The conditions are favorable for the formation of the SiC secondary phase with increasing the amount of extra silicon to 100 percent. Also, an increase in the amount of extra silicon leads to the formation of Ti3SiC2 with the columnar morphology.
[1] M. W. Barsoum, “The M n+1 AX n Phases: A New Class of Solids”, Progress in Solid State Chemistry, Vol. 28, pp 201-281, 2000.
[2] R. Radhakrishnan, J. J. Williams & M. Akinc, “Synthesis and high-temperature stability of Ti3SiC2”, Journal of alloys and Compound, Vol. 285, pp. 85–88, 1999.
[3] C. Racault, F. Langlais & R. Naslain, “Solid-state synthesis and characterization of the ternary phase Ti3SiC2”, Journal of Material Science, Vol. 29, pp. 3384–3392, 1994.
[4] Y. Zhou & Z. Sun, “Temperature fluctuation/hot pressing synthesis of Ti3SiC2”, Journal of Material Science, Vol. 35, pp. 4343–4346, 2000.
[5] M. W. Barsoum & T. El-Raghy, “Synthesis and characterization of a remarkable ceramic: Ti3SiC2”, Journal of American society, Vol. 79, pp. 1953–1956, 1996.
[6] T. El-Raghy & M. W. Barsoum, “Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution”, Journal of American society, Vol. 82, pp. 2849-2854, 1999.
[7] E. Wu, E. H. Kisi, S. J. Kennedy & A. J. Studer, “In situ neutron powder diffraction study of Ti3SiC2 synthesis”, Journal of American society, Vol. 84, pp. 2281-2289, 2001.
[8] J. T. Li & Y. Miyamoto, “Fabrication of monolithic Ti3SiC2 ceramic through reactive sintering of Ti/Si/2TiC”, Journal of Material Synthetic Process, Vol. 7, pp. 91-96, 1999.
[9] N. F. Gao, Y. Miyamoto & D. Zhang, “On physical and thermochemical properties of high-purity Ti3SiC2”, Materials Letter, Vol. 55, pp. 66-66, 2002.
[10] S. Yang, Z. M. Sun & H. Hashimoto, “Synthesis of Ti3SiC2 powder from 1Ti/(1−x) Si/2TiC powder mixtures”, Journal of alloys and Compound, Vol. 386, pp. 168-172, 2004.
[11] Y. Zhou, Z. Sun, S. Chen & Y. Zhang. “In-situ hot pressing/solid–liquid reaction synthesis of dense titanium silicon carbide bulk ceramics”, Material Resent Innovation, Vol. 2, pp. 142-146, 1998.
[12] T. M. Luo, W. Pan, S. Q. Li & J. Chen, “Synthesis and mechanical properties of in-situ hot-pressed Ti3SiC2 polycrystals”, Ceramic International, Vol. 28, pp. 227-230, 2002.
[13] H. Li, L. M. Peng, M. Gong, J. H. Zhao, L. H. He & C. Y. Guo, “Preparation and characterization of Ti3SiC2 powder”, Ceramic International, Vol. 30, pp. 2289–2294, 2004.
[14] Z. F. Zhang, Z. M. Sun, H. Hashimoto & T. Abe, “Effects of sintering temperature and Si content on the purity of Ti3SiC2 synthesized from Ti/Si/TiC powders”, Journal of alloys and Compound, Vol. 352, pp. 283–289, 1999.
[15] H. R. Orthner, R. Tomasi & F. W. J. Botta, “Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling”, Material Science and Engineering, Vol, 336, pp. 202–108, 2002.
[16] V. S. Ramachandran, R. M. Paroli, J. J. Beaudoin & A. H. Delgado, “Handbook of thermal analysis of construction materials”, 1st ed. Norwich, Noyes; 2002.
[17] J. F. Li, T. Matsuki & R. Watanabe, “Mechanical-alloying-assisted synthesis of Ti3SiC2 powder”, Journal of American society, Vol. 85, pp. 1004–1006, 2002.
[18] N. F. Gao, J. T. Li, D. Zhang & Y. Miyamoto, “Rapid synthesis of dense Ti3SiC2 by spark plasma sintering”, Journal of European Ceramic Society, Vol. 22, pp. 2365–2370, 2002.
[19] Z. M. Sun, S. Yang & H. Hashimoto, “Ti3SiC2 powder synthesis”, Ceramic Interbational, Vol. 30, pp. 873–877, 2004.
[20] D. Shana, Y. Guo, L. Zhou, L. Chengshan, J. Li, G. Liu & J Feng, “Synthesis of Ti3SiC2 bulks by infiltration method”, Journal of Alloys and Compounds, Vol. 509, pp. 3602–3605, 2011.
[21] S. Hwang, J. Han, D. Lee & S. W. Park, “Synthesis of Ti3SiC2 by infiltration of molten Si”, Journal of Alloys and Compounds, Vol. 509, pp. 336– 339, 2011.
[22] ج. پوراسد، ن. احسانی و ع. خلیفه سلطانی، "نقش پایه گرافیتی بر تشکیل ساختار گرادیان ترکیبی C/SiC طی فرایند سمانتاسیون تودهای"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 10، شماره 1، صفحه 91-98، بهار 1395.
[23] H. Foratirad, H. R. Baharvandi & M. G. Maragheh, “Effects of Dispersants on Dispersibility of Titanium Carbide Aqueous Suspension”, International Journal of Refractory Metals and Hard Materials, Vol. 56, pp. 96-103, 2016.
[24] H. Foratirad, H. R. Baharvandi & M. G. Maragheh, “Synthesis of nanolayered Ti3SiC2 MAX phase via infiltration of porous TiC preform produced by the gel casting process”, Materials Letters, Vol. 180, pp. 219–222, 2016.
[25] م. تیموری، ا. منشی و م. کثیری، "سنتز ویسکرهای کاربید سیلیسیم نانو ساختار با مکانیزم بخار- مایع- جامد(VLS)"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 7، شماره 4، صفحه 49-55، پاییز 1393.
[26] F. Sato, J. Li & R. Watanabe, “Reaction synthesis of from mixture of elemental powders”, Materials Transaction, Vol. 41, pp. 605–609, 2000.
[27] P. Hartman & W. G. Perdok, “On the relations between structure and morphology of crystals”, Acta Crystallographica, Vol. 8, pp. 521–524, 1995.
_||_