پوشش دهی فولاد با رزین آلکیدی بلند تقویت شده با نانوذرات سیلیکون کاربید به منظور ارتقای مقاومت به خوردگی
محورهای موضوعی : خوردگی و حفاظت موادحمیده اسماعیلی 1 , ساناز نقیبی 2 * , شیرین کردزنگنه 3
1 - واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
2 - واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
3 - واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
کلید واژه: خوردگی, فولاد, سیلیکون کاربید, رزین آلکیدی بلند, پوشش دهی,
چکیده مقاله :
برای بهبود خواص پوششهای آلی میتوان با اضافه کردن پرکنندههایی مانند نانو ذرات سرامیکی، پوشش را تقویت کرد. در تحقیق حاضر پوشش نانوکامپوزیتی آلی- معدنی شامل نانو ذرات سیلیکون کاربید در زمینه آلکیدی بر روی زیرلایه فولاد زنگ نزن L316 اعمال شده است. در این راستا از مقادیر 1، 2 و 3 درصد وزنی نانو ذرات سیلیکون کاربید در زمینه رزین آلکیدی و به منظور تهیه نانوکامپوزیت استفاده گردید. به منظور پخش مناسب نانو ذرات در زمینه پلیمری از همزن مغناطیسی و دستگاه اولتراسونیک بهره گرفته شد. فرآیند غوطه وری نیز به عنوان روش پوششدهی انتخاب گردید. برای بررسی مورفولوژی و توپوگرافی سطح پوشش از میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ نیروی اتمی AFM)) استفاده شد. مقاومت به خوردگی پوشش با آزمون پلاریزاسیون تافل، طیف سنجی امپدانس الکتروشیمیایی EIS)) و آزمون مه نمکی مورد مطالعه قرار گرفت. نتایج آزمونهای خوردگی نشان داد که افزودن نانو ذرات سیلیکون کاربید در زمینه آلکیدی باعث افزایش مقاومت به خوردگی و کاهش جریان خوردگی شد و نمونه حاوی 3 درصد وزنی نانو ذرات با کاهش دانسیته جریان از6-10×20/9 به 9-10×20/2 نسبت به فولاد زنگ نزن به عنوان نمونه ی با بالاترین مقاومت به خوردگی انتخاب شد. نتایج آزمون چسبندگی پوشش با استفاده از روش کراس کات کاهش میزان جدا شدن پوشش از زیرلایه را از 9% به 4% نشان داد. ضخامت پوشش در حدود 20 میکرومتر تعیین گردید.
To improve the properties of the organic coatings ceramic nanoparticles can be applied. In the present study, inorganic-organic nanocomposite coating contains SiC nnoparticles and alkyd resin was applied on the stainless still substrates. In this regard 1, 2 and 3 wt% of SiC nanoparticles were used to prepare the nanocomposite. In order to achieve a homogeneous mixture of nanoparticles and polymeric resin, magnetic stirrer and ultrasonic device were used. The coatings were deposited on the substrates by dipping technique. To study the morphology thickness and surface of the coatings, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used. The corrosion resistance of the coatings was investigated by polarization Tafel test, electrochemical impedance spectroscopy (EIS) and salt spray. Corrosion test results showed a reduction of corrosion current and an increasing in the corrosion resistance of substrate with nanocomposites coating and the sample with 3 wt% nanoparticles was selected as optimum sample by reducing current density from 9/2×10-6 to 2/2×10-9. The results of adhesion test by cross-cut method showed the reduction of coating separation from 9% to 4%. The coating thickness of sample was measured about 20 μm.
[1] B. Nikravesh, B. Ramezanzadeh, A. A. Sarabi & S. M. Kasiriha, “Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments”, Corrosion Science, Vol. 53, pp. 1592-1603, 2011.
[2] M. Schumacher, “Seawater corrosion handbook”, William Andrew Publishing/Noyes, 1979.
[3] N. Jiratumnukul, S. Pruthipaotoon & T. Pitsaroup, “Nanocomposite alkyd coatings”, Applied Polymer Science, Vol. 102, pp. 2639-2641, 2006.
[4] B. Ramezanzadeh & M. Attar, “An evaluation of the corrosion resistance and adhesion properties of an epoxy-nanocomposite on a hot-dip galvanized steel (HDG (treated by different kinds of conversion coatings”, Surface and Coating Technology, Vol. 205, pp. 4649-4657, 2011.
[5] D. Zaarei, A. Sarabi, F. Sharif, M. Moazzami Gudarzi & S. Kassiriha, “A New approach to using submicron emeraldine-based polyaniline in corrosion-resistant epoxy coatings”, Coatings Technology and Research, Vol. 9, pp. 47–57, 2012.
[6] D. Zaarei, A. Sarabi, F. Sharif, M. Moazzami Gudarzi & S. Kassiriha, “Preparation and evaluation of epoxy-clay nanocomposite coatings for corrosion protection”, Vol. 7, pp. 126-136, 2010.
[7] X. Shi, T. A. Nguyen, Z. Suo, Y. Liu & R. Avci, “Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating”, Surface and Coatings Technology, Vol. 204, pp. 237-245, 2009.
[8] Y. Wang, S. Lim, J. Luo & Z. Xu, “Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings”, Wear, Vol. 260, pp. 976-983, 2006.
[9] Baczoni & F. Molnár, “Advanced Examination of Zinc Rich Primers with Thermodielectric Spectroscopy”, Acta Polytechnica Hungarica, Vol. 8, 2011.
[10] H. O. Pierson, “Handbook of Refractory Carbides and Ntrides, Properties, Characteristics, Processing and Application”, Noyes publication, pp. 120-140, 1996.
[11] Q. L. Ji, M. Q. Zhang, M. Z. Rong, B. Wetzel & K. Friedrich, “Friction and wear of epoxy composites containing surface modified SiC nanoparticles”, Tribology Letters, Vol. 20, pp. 115-123, 2005.
[12] D. Reisi, R. Shoja razavi & M. Taheran, “Evaluation of the mechanical and anticorrosion properties of PU-SiC nanocomposite coatings”, Vol. 9, pp. 239-250, 2015.
[13] P. Mavinakuli, S. Wei, Q. Wang, A. B. Karki, S. Dhage, Z. Wang, D. P. Young & Z. Guo, “Polypyrrole-Silicon Carbide Nanocomposites with Tunable Electrical Conductivity”, Physical Chemistry, Vol. 114, pp. 3874-3882, 2010.
[14] Dehghani, A. Zamani, S. H. mirhossieni & L. Sharifi, “Evaluation of mechanical properties of polyurethane nanocomposite coatings reinforced with silicon carbide and alumina particles”, Color Science Technology, Vol. 9, pp. 169-176, 2016.
[15] م، کریمی، س. م. حجازی و ا. صائب نوری، "مقایسه رفتار خوردگی پوششهای اپوکسی با استایرن بوتادین رابر به همراه نانو ذرات اکسید مس در محیط غوطه وری آب دریا"، فصلنامه علوم و مهندسی خوردگی، سال پنجم، شماره7، 1394.
[16] Y. Zhao, J. Wang, X. Cui & H. Wang, “The use of Photoshop software to estimate the adhesion and rust-resistant properties of coating film”, Surface and Interface Analysis, Vol. 43, pp. 913-917,2011.
[17] ش، اشهری و ع. ا. سرابی، "خواص ضد خوردگی نانو کامپوزیت پلی یورتان- کلی"، انجمن خوردگی ایران، یازدهمین کنگره خوردگی ایران، دانشگاه شهید بهشتی کرمان، 985-977، 1388.
[18] T. A. Vilgis, G. Heinrich & M. Kluppel, “Reinforcement of Polymer nano-composites”, Cambridge, New York, 2009.
[19] S. K. Dhoke & A. S. Khanna, “Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings”, Progress in Organic Coatings, Vol. 74, pp. 92– 99, 2012.
[20] ع. ر، قاضی زاده، م. مهدویان و ف. نصیرپوری، "اثر نانوذرات نقره بر پخت و خواص حفاظت خوردگی پوشش اپوکسی"، فصلنامه علوم و مهندسی خوردگی، شماره2، سال چهارم، 1393.
[21] Golgoon, M. Aliofkhazraei, M. Toorani, M. H. Moradi & E. Golgoon, “The structure and corrosion properties of polyester-clay nanocomposite coatings and effect of curing on coatings properties”, Science and Technology of Composites, Vol. 3, pp. 51-58, 2016.
[22] M. J. Palimi, M. Peymannia & B. Ramezanzadeh “An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface”, Progress in Organic Coatings, Vol. 80, pp. 164–175, 2015.
[23] ی. ذاکری نیا و ر. بازرگان لاری، "اعمال پوشش نانوکامپوزیتی Ni-B-ZrO2 به روش الکترولس بر روی فولاد CK45 و بررسی خواص تریبولوژیکی آن"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 4، 99-89، 1395.
[24] س. نقیبی، ا. جمشیدی، م. برزگر و س. رمضانی، "بررسی ریزساختاری لایه نازک تیتانیا بر روی فولاد 316 به روش سلژل (بهینهسازی متغیرهای فرآیند با روش آماری تاگوچی"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 6، شماره 4، 89-79، 1391.
_||_