سنتز و مشخصهیابی نانومیله های Fe2O3/BaFe12O19 و بررسی خواص مغناطیسی آنها
محورهای موضوعی : سنتز موادمحمد جزیره پور هرمزی 1 , محمد حسین شمس 2
1 - عضو هیات علمی دانشگاه صنعتی مالک اشتر
2 - دانشگاه صنعتی مالک اشتر
کلید واژه: نانومیله, هیدروترمال, اکسید آهن, خواص مغناطیسی, هماتیت,
چکیده مقاله :
در این مقاله نانومیلههای Fe2O3/BaFe12O19 با استفاده از یک فرآیند هیدروترمال ساده و ارزان با قابلیت تولید انبوه سنتز شده است. ویژگیهای مورفولوژیک نانومیلهها نظیر طول، قطر و نسبت ابعادی در این فرآیند قابلکنترل است. EDTA در این فرآیند بهعنوان عامل کنترلکننده رشد استفاده شده است. در این پژوهش تأثیر عوامل مختلفی نظیر دمای فرآوری هیدروترمال (115، 150 و 180 درجه سانتیگراد)، زمان فرآوری هیدروترمال (5، 10 و 40 ساعت)، نوع عامل کنترلکننده رشد (EDTA، PEG400، PEG6000، CA) و نوع عامل قلیایی (NaOH و NH3) بررسی گردید. در شرایط مختلف اشکال گوناگون نظیر کرههایی با ابعاد 50 تا 100 نانومتر، نانومیلههایی با قطرهای 50 تا 400 نانومتر و طولهای 1 تا 10 میکرون سنتز شد. مشخصات مورفولوژی نمونهها توسط میکروسکوپ الکترونی روبشی (SEM)و خواص مغناطیسی نمونهها با استفاده از مغناطش سنج با گرادیان نیروی متناوب (AGFM) مورد مطالعه قرار گرفت. نانومیلههای مورد بررسی در این تحقیق در موضوعاتی نظیر حذف یونهای فلزات سنگین از پسابها، کاتالیستها، سلولهای خورشیدی و مواد جاذب امواج مایکروویو قابل کاربرد هستند.
In this paper Fe2O3/BaFe12O19 nanorods were synthesized by a simple low-cost hydrothermal process with large scale production capability. Morphologic characteristics of nanorods such as length, diameter and aspect ratio were controllable. EDTA was used in the synthesis process as the growth control agent. In this investigation the effects of different parameters such as temperature (115, 150 and 180 °C), time (5, 10, 40 h), growth controlling agent (EDTA, PEG400, PEG6000, CA) and basic agent (NaOH and NH3) were also studied. In different conditions different morphologies like spheres with a diameter of 50-100 nm and nanorods with diameters of 50-400 nm and lengths of 1-10 μm were synthesized. Morphological characteristics of the samples were studied by scanning electron microscope (SEM) and magnetic properties were measured by alternative gradient force magnetometer (AGFM). The nanorods of this research could be used for heavy metal ions removal from waste water, catalysts, solar cells and microwave absorbing materials.
[1] T. Guo, M. S. Yao, Y. H. Lin & C. W. Nan, “A comprehensive review on synthesis methods for transition-metal oxide nanostructuresˮ, CrystEngComm, Vol. 17, pp. 3551-3585, 2015.
[2] R. Liu, Z. Jiang, Q. Liu, X. Zhu, L. Liu, L. Ni & C. Shen, “Novel red blood cell shaped [small alpha]- Fe2O3 microstructures and FeO(OH) nanorods as high capacity supercapacitorsˮ, RSC Advances, Vol. 5, pp. 91127-91133, 2015.
[3] W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren & C. Jiang, “Large-Scale and Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes: Shape Evolution, Growth Mechanism, and Magnetic Propertiesˮ, The Journal of Physical Chemistry C, Vol. 114, pp. 16092-1610, 2010.
[4] K. V. Manukyan, Y. S. Chen, S. Rouvimov, P. Li, X. Li, S. Dong, X. Liu, J. K. Furdyna, A. Orlov, G. H. Bernstein, W. Porod, S. Roslyakov & A. S. Mukasyan, “Ultrasmall α-Fe2O3 Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Processˮ, The Journal of Physical Chemistry, Vol. 118C, pp. 16264-16271, 2014.
[5] T. Wang, S. Zhou, C. Zhang, J. Lian, Y. Liang & W. Yuan, “Facile synthesis of hematite nanoparticles and nanocubes and their shape-dependent optical propertiesˮ, New Journal of Chemistry, Vol. 38, pp. 46-49, 2014.
[6] T. Yang, Z. Huang, Y. Liu, M. Fang, X. Ouyang & M. Hu, “Controlled synthesis of porous FeCO3 microspheres and the conversion to α-Fe2O3 with unconventional morphologyˮ, Ceramics International, Vol. 40, pp. 11975-11983, 2014.
[7] A. A. Ayachi, H. Mechakra, M. M. Silvan, S. Boudjaadar & S. Achour, “Monodisperse α-Fe2O3 nanoplatelets: Synthesis and characterizationˮ, Ceramics International, Vol. 41, pp. 2228-2233, 2015.
[8] J. Hua & Z. Kang, “Hydrothermal Synthesis and Magnetic Property of Monodisperse Plate-Like α- Fe2O3 Nanoparticlesˮ, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, Vol. pp, 20150
[9] J. Jayashainy & P. Sagayaraj, “Investigation on the shape evolution of 1D mesoporous hematite nanoparticles prepared via anion-assisted hydrothermal approachˮ, Journal of Alloys and Compounds, Vol. 626, pp. 323-329, 2015.
[10] D. Kumar, H. Singh, S. Jouen, B. Hannoyer & S. Banerjee, “Effect of precursor on the formation of different phases of iron oxide nanoparticlesˮ, RSC Advances, Vol. 5, pp. 7138-7150, 2015.
[11] H. Liang, W. Chen, R. Wang, Z. Qi, J. Mi & Z. Wang, “X-shaped hollow α-FeOOH penetration twins and their conversion to α- Fe2O3 nanocrystals bound by high-index facets with enhanced photocatalytic activityˮ, Chemical Engineering Journal, Vol. 27, pp. 224-230, 2015.
[12] D. Maiti & P. Sujatha Devi, “Selective formation of iron oxide and oxyhydroxide nanoparticles at room temperature: Critical role of concentration of ferric nitrateˮ, Materials Chemistry and Physics, Vol. 154, pp. 144-151, 2015
[13] B. P. Singh, N. Sharma, R. Kumar & A. Kumar, “Simple Hydrolysis Synthesis of Uniform Rice-Shaped α-FeOOH Nanocrystals and Their Transformation to α-Fe2O3 Microspheresˮ, Indian Journal of Materials Science, Vol. 2015, pp. 7, 2015.
[14] S. Okada, K. Takagi & K. Ozaki, “Synthesis of submicron plate-like hematite without organic additives and reduction to plate-like α-Feˮ, Materials Letters, Vol. 140, pp. 135-139, 2015.
[15] S. Rehman, W. Yang, F. Liu, Y. Hong, T. Wang, Y. Hou, “Facile synthesis of anisotropic single crystalline α-Fe2O3 nanoplates and their facet-dependent catalytic performanceˮ, Inorganic Chemistry Frontiers, Vol. 2, pp. 576-583, 2015.
[16] M. Tadic, I. Milosevic, S. Kralj, M. L. Saboungi & L. Motte, “Ferromagnetic behavior and exchange bias effect in akaganeite nanorodsˮ, Applied Physics Letters, Vol. 106, pp. 183706, 2015.
[17] X. Xu, Y. Wan, Y. Sha, W. Deng, G. Xue & D. Zhou, “Nanoporous iron oxide@carbon composites with low carbon content as high-performance anodes for lithium-ion batteriesˮ, RSC Advances, Vol. 5, pp. 89092-89098, 2015.
[18] S. Yang, B. Zhou, Z. Ding, H. Zheng, L. Huang, J. Pan, W. Wu & H. Zhang, “Tetragonal hematite single crystals as anode materials for high performance lithium ion batteriesˮ, Journal of Power Sources, Vol. 286, pp. 124-129, 2015.
[19] J. Zhao, H. S. Chen, K. Matras Postolek & P. Yang, “Morphology evolution of α-Fe2O3 controlled via incorporation of alkaline earth metal ionsˮ, CrystEngComm, Vol. 17, pp. 7175-7181, 2015.
[20] L. Y. Novoselova, “Hematite nanopowder obtained from waste: Iron-removal sludgeˮ, Powder Technology, Vol. 287, pp. 364-372, 2016.
[21] H. Hao, D. Sun, Y. Xu, P. Liu, G. Zhang, Y. Sun & D. Gao, “Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic propertiesˮ, Journal of Colloid and Interface Science, Vol. 462, pp. 315-324, 2016.
[22] M. Jazirehpour & S. A. Seyyed Ebrahimi, “Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerfaceˮ, Journal of Alloys and Compounds, Vol. 639, pp. 280-288, 2015.
[23] M. Jazirehpour & S. A. Seyyed Ebrahimi, “Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticlesˮ, Journal of Alloys and Compounds, Vol. 638, pp. 188-196, 2015.
[24] M. Jazirehpour, M. H. Shams & O. Khani, “Modified sol–gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic propertiesˮ, Journal of Alloys and Compounds, Vol. 545, pp. 32-40, 2012.
[25] ص. منافی و ع. سلطانمرادی، "بررسی تغییرات کریستالی نانوپودرهای هیدروکسی آپاتیت سنتز شده به روش هیدروترمال"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 6، صفحه 29-36، 1391.
[26] ص. منافی و م. جعفریان، "سنتز نانوذرات باریم تیتانات با درجه بلورینگی بالا به روش هیدروترمال"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 7، صفحه 13-20، 1393.
_||_