بررسی آنالیز پراش اشعه ایکس و ریز ساختار آلیاژهای جدید آنتروپی بالایTiZrNbXX ساخته شده از روش متالورژی پودر
محورهای موضوعی : متالورژی پودرمسعود یوسفی 1 , مسعود رجبی 2 , علی ریحانی 3 , خسرو رحمانی 4 , نیره عسگری 5
1 - گروه علوم و مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (IKIU)، قزوین، ایران
2 - گروه مهندسی مواد و سرامیک، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
3 - دانشیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.
4 - دانشیار، گروه مهندسی مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی
5 - دکتری مواد ، آزمایشگاه سرامیک، گروه مهندسی مواد ، دانشکده فنی و مهندسی ، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.
کلید واژه: آلیاژ آنتروپی بالا , آلیاژسازی مکانیکی, ریز ساختار , ایکس ار دی,
چکیده مقاله :
این مطالعه به بررسی استفاده از سه فلز دیرگداز، یعنی تیتانیوم (Ti)، نیوبیم (Nb) و زیرکونیوم (Zr)، در ترکیب با آهن (Fe)، کروم (Cr) و وانادیوم (V) برای تولید آلیاژ زیستی آنتروپی بالا میپردازد. سه ترکیب آلیاژی با آنتروپی بالا، یعنی TiZrNbCrV، TiZrNbFeCr و TiZrNbFeV با استفاده از تکنیک آلیاژسازی مکانیکی و روش متالورژی پودر ساخته شدند. بررسی در مورد آلیاژها از طریق آنالیز پراش اشعه ایکس (1XRD) و مطالعات میکروسکوپ الکترونی روبشی نشر میدانی (2FE-SEM)صورت گرفت. مطالعه حاضر نشان داده است که خنکسازی تدریجی پس از فرآیند تف جوشی منجر به ایجاد درصد کمی از فازهای هگزاکونال فشرده (3HCP) در هر یک از سه آلیاژ مورد بررسی میشود. علاوه بر این، دو تا از آلیاژهای مورد بررسی تشکیل فازهای بین فلزی ناشی از فرآیند خنکسازی مشابه را نشان دادند. ریزساختار آلیاژ های ساخته شده شامل چهار ناحیه برای همه آلیاژهای حاوی شبکه مکعبی مرکزپر 4 BCC اصلی، HCP جزیی(و سایر فازها)، فضاهای خالی و نواحی Nb دار می باشند.
This study investigates the use of three refractory metals, their names are titanium (Ti), niobium (Nb) and zirconium (Zr), in combination with iron (Fe), chromium (Cr) and vanadium (V) to produce high entropy bioalloys. . Three high entropy alloy compositions, namely TiZrNbCrV, TiZrNbFeCr and TiZrNbFeV, were made using mechanical alloying technique and powder metallurgy method. Investigation about alloys was done through X-ray diffraction analysis (XRD) and field emission scanning electron microscope (FE-SEM) studies. The present study has shown that gradual cooling after the sintering process leads to the creation of a small percentage of compact hexagonal phases (HCP) in each of the three investigated alloys. In addition, two of the investigated alloys showed the formation of intermetallic phases due to the same cooling process. The microstructure of manufactured alloys includes four regions for all alloys containing the main Body-centered cubic ) BCC(, partial HCP (and other phases), voids, and Nb-containing regions.
[1] R. E. Reed-Hill, R. Abbaschian & R. Abbaschian, "Physical metallurgy principles", New York: Van Nostrand, Vol. 17, 1973.
[2] J. R. Davis, ed, "Alloying: understanding the basics", ASM international. 2001.
[3] D. Brandt, "Metallurgy fundamentals", Goodheart-Willcox Company, Inc, 1985,
[4] B. Cantor, "Multicomponent and high entropy alloys", Entropy, vol. 16, no. 9, 2014.
[5] J. W. Yeh, "Overview of high-entropy alloys", In High-Entropy Alloys Springer, Cham, 2016.
[6] M. C. Gao, J. W. Yeh, P. K. Liaw & Y. Zhang, "High-entropy alloys", Cham: Springer International Publishing, 2016.
[7] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau & S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes", Advanced Engineering Materials, vol. 6, no. 5, 2004.
[8] B. Cantor, I. T. H. Chang, P. Knight & A. J. B. Vincent, "Microstructural development in equiatomic multicomponent alloys", Materials Science and Engineering: A, vol. 375, 2004.
[9] S. Ranganathan, "Alloyed pleasures: multimetallic cocktails", Current science, 2003.
[10] J. W. Yeh, "Alloy design strategies and future trends in high-entropy alloys", Jom, vol. 65, no. 12, 2013.
[11] P. K. Huang, J. W. Yeh, T. T. Shun & S. K. Chen, "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating", Advanced Engineering Materials, 2004.
[12] C. Y. Hsu, J. W. Yeh, S. K. Chen & T. T. Shun, "Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition", Metallurgical and Materials Transactions A, 2004.
[13] J. W. Yeh, S. J.Lin, T. S. Chin, J. Y. Gan, S. K. Chen, T. T. Shun, C. H. Tsau & S. Y. Chou, "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements", Metallurgical and Materials Transactions A, 2004.
[14] T. K. Chen, T. T. Shun, J. W. Yeh & M. S. Wong, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering", Surface and Coatings Technology, 2004.
[15] C. J. Tong, Y. L. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun, C. H. Tsau & S. Y. Chang, "Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements" Metallurgical and Materials Transactions A, 2005.
[16] G. U. O. Sheng & C. T. Liu, "Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase", Progress in Natural Science: Materials International, 2011.
[17] Y. E. H. Jien-Wei, "Recent progress in high entropy alloys", Ann. Chim. Sci. Mat, 2006.
[18] Y.Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw & Z. P. Lu, "Microstructures and properties of high-entropy alloys", Progress in Materials Science, 2014.
[19] L. M. Wang, C. C. Chen, J. W. Yeh & S. T. Ke, "The microstructure and strengthening mechanism of thermal spray coating NixCo0. 6Fe0. 2CrySizAlTi0. 2 high-entropy alloys" Materials Chemistry and Physics, 2011.
[20] H. Zhang, Y. Pan & Y. He, "Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding", Journal of thermal spray technology, vol. 20, no. 5, pp. 1049-1055 2011.
[21] W. Y. Ching, S. San, J. Brechtl, R. Sakidja, M. Zhang, & P. K. Liaw, "Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys", NPJ Computational Materials, 2020.
[22] S. P. Wang & J. Xu, "TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties", Materials Science and Engineering: C, 2017.
[23] T. Nagase, K. Mizuuchi & T. Nakano, "Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X= V, Mo, W) high-entropy alloys", Entropy, vol. 21, no. 5, pp. 483.
[24] A. Vats, N. S. Tolley, J. M. Polak & J. E. Gough, "Scaffolds and biomaterials for tissue engineering: a review of clinical applications", Clinical Otolaryngology & Allied Sciences, vol. 28, no. 3, pp. 165-72, 2003.
[25] M. Niinomi, T. Narushima & M. Nakai, "Advances in metallic biomaterials", Heidelberg, DE: Springer, 2015.
[26] G. Popescu, B. Ghiban, C. A. Popescu, L. Rosu, R. Truscă, I. Carcea, V. Soare, D. Dumitrescu, I. M. Constantin, T. Olaru & B. A. Carlan, "New TiZrNbTaFe high entropy alloy used for medical applications", In IOP Conference Series: Materials Science and Engineering Publishing, 2018.
[27] J. W. Bae & H. S. Kim, "Towards ferrous medium-entropy alloys with low-cost and high-performance", Scripta Materialia, 2020.
[28] K. Biswas, J. W. Yeh, P. P. Bhattacharjee & J. T. M. DeHosson, "High entropy alloys: Key issues under passionate debate", Scripta Materialia, 2020.
[29] H. Naser-Zoshki, A. R. Kiani- Rashid & J. Vahdati-Khaki, "Design of Refractory High-Entropy Alloys to Reduce Weight and Cost", Founding Research Journal, vol. 4, no, 14, pp. 167-173, 2020.
[30] H. Zhang, Y. Pan & Y. He, "Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding", Journal of thermal spray technology, 2011.
[31] E. P. George, D. Raabe & R. O. Ritchie, "High-entropy alloys", Nature Reviews Materials, 2019.
[32] B. R. Ke, Y. C. Sun, Y. Zhang, W. R. Wang, W. M. Wang, P. Y. Ma ... & Z. Y. Fu, "Powder metallurgy of high-entropy alloys and related composites: A short review", International Journal of Minerals, Metallurgy and Materials, 2021.
[33] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, "Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials", Scr. Mater, 2017.
[34] D. Castro, P. Jaeger, A. Catarina Baptista & J. P. Oliveira, "An Overview of High-Entropy Alloys as Biomaterials", Metals, 2021.
[35] Y. Iijim, T. Nagase, A. Matsugaki, P. Wang, K. Ameyama & T. Nakano, "Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials", Materials and Design, vol. 202, 2021.
[36] A. Motallebzadeh, N. S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo & D. Canadinc, "Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications", Intermetallics, 2019.
[37] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, Ch. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H. S. Kim & T. Nakano, "Development of TiNbTaZrMo bio-high entropy alloy (Bio-HEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility", Scripta Materialia, 2021.
[38] T. Hori, T. Nagase, M. Todai, A. Matsugaki & T. Nakano, "Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials", Scripta Materialia, 2019.
[39] T. Nagasea, Y. Iijima, A. Matsugaki, K. Ameyama & T. Nakano, "Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo highentropy alloys as metallic biomaterials", Materials Science & Engineering C, 2020.
[40] J. Shittu, M. Pole, I. Cockerill, M. Sadeghilaridjani, L V. Kumar Reddy, G. Manivasagam, H. Singh, Harpreet S. Grewal, H. Singh Arora & S. Mukherjee, "Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment", ACS Appl. Bio Mater, 2020.
[41] Y. Wu, P. K. Liaw & Y. Zhang, "Preparation of Bulk TiZrNbMoV and NbTiAlTaV High-Entropy Alloys by Powder Sintering", Metals, 2021.
[42] Z. Jiří, M. Jaroslav, P. Zdeněk, A. Irena & V. Jaroslav, "Structure And Mechanical Properties Of Tanbhfzrti High Entropy Alloy", Jun Brno, Czech Republic, 2015.
[43] B. Weia, J. Panga, J. Xub, C. Sunb, H. Zhangb, Z. Wang, C. Yu & W. Ke, "Microbiologically influenced corrosion of TiZrNb medium-entropy alloys by Desulfovibrio desulfuricans", Journal of Alloys and Compounds, 2021.
[44] H. Song, S. Lee & K. Lee, "Thermodynamic parameters, microstructure, and electrochemical properties of equiatomic TiMoVWCr and TiMoVNbZr high-entropy alloys prepared by vacuum arc remelting", International Journal of Refractory Metals and Hard Materials, 2021.
[45] N. Huaa, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtlc & P. K. Liaw, "Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys", Journal of Alloys and Compounds, 2021.
[46] W. Yang, Y. Liu, Sh. Pang, P. K. Liaw & T. Zhang, "Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy", Intermetallics, 2020.
[47] A. Amigó, A. Vicente, Conrado R. M. Afonso & V. Amigó, "Mechanical Properties and the Microstructure of Ti-35Nb-10Ta-xFe Alloys Obtained by Powder Metallurgy for Biomedical Applications", Metals. 2019.
[48] V. Mayur, G. M. Muralikrishna & B. S. Murty. "High-entropy alloys by mechanical alloying: A review", Journal of Materials Research, 2019.
[49] M. Yousefi, M. Rajabi, A. Reyhani, N. Asgari & Kh. Rahmani, "Investigation of microstructure of pressed and sintered TiZrNbCrV, TiZrNbFeCr, TiZrNbFeV high entropy alloys produced through powder metallurgy and mechanical alloying", Metal Science and Heat treatment, accepted article, 2023.
[50] ن. حسنزاده نعمتی، م. بابایی، ع. چیذری، عرفان و د. ملک پژو، "آلیاژسازی مکانیکی و ساخت قطعات آلیاژی Zn-4Mn از طریق SPS بهمنظور استفاده در کاشتنیهای کوتاهمدت"، فرآیندهای نوین در مهندسی مواد، سال 16، دوره 4، صص 17-25، 1401.
[51] م. خدائی، م. مرآتیان، ا. صوابی و م. ح. فتحی، "اثر دمای تف جوشی بر ویژگیهای کاشتنی تیتانیومی متخلخل تولید شده به روش فضا نگهدارنده جهت استفاده در بازسازی بافت سخت"، فرآیندهای نوین در مهندسی مواد، سال 9، دوره 3، صص 9-1، 1394.