سنتزنانوذرات Mg0.5Zn0.5Fe2O4 به روش هم رسوبی و بررسی خواص حسگری آن
محورهای موضوعی : سنتز موادحمیدرضا ابراهیمی 1 * , علی رضا امینی 2
1 - مرکز تحقیقات مهندسی پیشرفته،واحد شهر مجلسی، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - مرکز تحقیقات مهندسی پیشرفته،واحد شهر مجلسی، دانشگاه آزاد اسلامی، اصفهان، ایران
کلید واژه: واژه های کلیدی: نانو فریت منیزیم-روی, پراش پرتو ایکس, حساسیت پذیری, استونیتریل,
چکیده مقاله :
چکیدهدر این مطالعه، به ساخت و مطالعه حساسیت پذیری نانو حساسه فریت روی-منیزیم با فرمول عمومی Mg0.5Zn0.5Fe2O4 پرداخته شده است.روش به کار رفته برای ساخت نانو حساسه روش همرسوبی می باشد که برای این ترکیب روش جدیدی است.برای بررسی ساختار این نانو حساسه، از آزمایشاتی نظیر ، پراش پرتو ایکس1 که هم تک فاز بودن ترکیب و هم نانو بودن آن را نشان میدهد،وآزمایش میکروسکوپ الکترونی عبوری که اندازه نانو ذرات را مشخص کرده و همین طور یکنواختی آنها را نمایش می دهد و مغناطیس سنج گرادیان جریان متناوب3 که خاصیت مغناطیسی این نانو فریت را نشان می دهد ، استفاده شده است. برای تست حساسیت پذیری این نانو حساسه از یک دستگاه آزمایشگاهی با قابلیت کنترل دما و رطوبت با حجم 5 لیتر بهره بردیم که مجهز به یک گرم کن حساسه با کنترل دما بوده و حساسه روی آن قرار می گیرد و یک محفظه برای تزریق گونه های مورد آزمایش،و یک برد الکترونیکی رابط که اطلاعات نانوحساسه را به سیستم رایانه انتقال و توسط نرم افزار لب ویو4 مورد تجزیه و تحلیل قرار می گیرد. در مورد این نانو حساسه که با اتانل، متانل، کلروفرم، استونیتریل، آمونیاک، استن موردآزمایش قرار گرفت،حساسیت پذیری مربوط به متانل واستونیتریل نسبت به بقیه بهتر است و دمای مناسب برای پاسخ این نانو حساسه که از 100 درجه سانتیگراد تا 350 درجه تست شد، دمای 300 درجه سانتیگراد می باشد.
In this study, synthesis and studying sensitivity of Nano sensor of zinc magnesium ferrite with common formula of Mg0.5Zn0.5Fe2O4 has been considered. Applied method for manufacturing Nano sensor is co-precipitation method that is a novel method for this combination. Nano sensor structure was investigated using such experiments as X-ray diffraction (XRD(, transmission electron microscopy (TEM) and X-ray fluorescence (XRF). Respectively, XRD experiment confirmed the formation of ferrite phase, TEM image showed nanostructure formation of this ferrite and XRF information reconfirmed correct atomic relation of ferrite. Sensitivity of this Nano sensor was tested using a laboratory system equipped with sensor heater with the ability of temperature control on which Nano-sensor was put, a chamber for injecting various solvents and a connector electronic range that transferred Nano-sensor information to computer and it was analyzed by Lab View software. This system could control temperature and wetness and its volume was 5 litters. This Nano sensor was tested using ethanol, methanol, chloroform, acetonitrile, ammonia and acetone and sensitivity of methanol and acetonitrile was better than others. The best response temperature for this Nano sensor (between 100˚C -300˚C) was 300˚C.
[1] S. A. Hooker, “nano technology advantages applied to gas sensor developmentˮ, the nanoparticles conference proceeding, 2002.
[2] آ. وحیدیان، ع. سعیدی و م. ع. گلعذار، "اثر متغیرهای رسوب دهی بر فرایند رسوب دهی الکتریکی پالسی کامپوزیت نانو ساختار FeNi-WC"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال دهم، شماره سوم، پاییز 1395.
[3] ا. زارعی، ا. منشی و ع. صفر تلوری، "تولید نانو کامپوزیت حاصل از دو پیوند دهنده اکسی کلرید منیزیم و تری پلی فسفات سدیم و اکسید روی به همراه نانوسیلیس"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال هشتم، شماره چهارم، زمستان 1393.
[4] C. Choomani, G. P. Hushan Nagab, S. Ashoka, B. Daruka Prasad, B. Rudraswamy & G. T. Chanrappa, “Structural and Magnetic studies of Mg(1-x)ZnxFe2O4 nanoparticles prepared by a solution combustion method”, journal of alloys and compounds, Vol. 578, pp. 103-109, 2013.
[5] J. P. Viricelle, A. Valleron, C. Pijolat, P. Breuil & S. Ott, “Gas Sensors Based on Tin Dioxide for Exhaust Gas Application, modeling of response for pure gases and for mixturesˮ, Procedia Engineering, Vol. 47, pp. 655 – 658, 2012.
[6] K. Jaroslaw, A. Brandenburg, A. Grob & M. Ralf, “Novel tube-type LTCC transducers with buried heaters and inner electrodes for high temperatures gas sensorsˮ, Procedia Engineering, Vol. 47, pp. 60 –63, 2012.
[7] A. Ponzoni, A. Depari, E. Comini, G. Faglia, A. Flamminib & G. Sberveglieri, “Response dynamics of metal oxide gas sensors working with temperature profile protocols”, Procedia Engineering, Vol. 25, pp. 1173 – 1176, 2011.
[8] C. Nai-Sheng, Y. Xiao-Juan, E. Sheng & L. J. Huang, “Reducing gas-sensing properties of ferrite compounds MFe2 O4(M=Cu,Zn,Cd and Mg)”, Sensors and Actuators, Vol. 66B, pp. 178–180, 2007.
[9] A. Manikandan, J. Judith Vijaya, L. John Kennedy & M. Bououdina, “Structural, optical and magnetic properties of Zn1-_xCuxFe2O4 nanoparticlesprepared by microwave combustion method”, Journal of Molecular Structure, Vol. 1035, pp. 332–340, 2013.
[10] P. Gwiżdż, A. Brudnik & K. Zakrzewska, “Temperature modulated response of gas sensors array - humidity interference”, Procedia Engineering, Vol. 47, pp. 1045 – 1048, 2012.
[11] A. Al-Sharifa & M. Abo-AlSondos, “Structural and Magnetic Properties of Ni1-xMgx Fe2O4 Ferrites”, Vol. 2, pp. 61-72, 2008.
[12] V. J. Mohanraj & Y. chon, “Nanoparticles-AReviewˮ, Tropical Journal of Pharmaceutical Research, Vol.5, No. 1, pp. 561-573, 2006.
[13] B. L. Cushing, V. L. Kolesnichenho & C. J. O'Connor, “Recent Advances in the liquid- phase syntheses of Inorganic Nanoparticlesˮ, chem. Rev, Vol.104, pp. 3893-3946, 2004.
[14] B. Kavlicoglu, “synthesis of surface modified ferrifluidˮ, Ph.D thesis, university of Nevada, Reno, 2005.
[15] P. Berger, “preparation and properties of an aqueous ferrifluidˮ, education Journal of chemical, Vol.76, pp. 943-948, 1999.
[16] K. Mukherjee & S. B. Majumder, “synthesis of embedded and isolated Mg0.5Zn0.5Fe2o4 nano-tubes and investigation on their anomalous gas sensing characteristics”, sensor and actuators, Vol. 177B, pp. 55-63, 2013.
[17] V. Kassabova-Zhetcheva & L. Pavlova, “synthesis and characterization of Mg-Zn ferrite/sio2 composites with high magnetic losses”, journal of the university of chemical technology and metallurgy, Vol. 47, pp. 263-268, 2012.
[18] S. Kumar, A. Sharma, M. B. Singh & S. P. Sharma, “Synthesis of magnesium-zinc nano ferrites by using Aloe vera extract solution and their structural and magnetic characterizationsˮ, Archives of Physics Research, Vol. 5, No. 1, pp. 18-24, 2014.
[19] C. Choodamani, G. P. Nagabhushana, S. Ashoka, B. Daruka Prasad, B. Rudraswamy & G. T. Chandrappa, “Structural and magnetic studies of Mg (1-x) ZnxFe2O4 nanoparticles prepared by a solution combustion method”, Journal of Alloys and Compounds, Vol. 578, pp. 103–109, 2013.
[20] K. Mukherjee & S. B. Majumder, “Hydrogen sensing characteristics of nanocrystalline Mg0.5Zn0.5Fe2O4 thin film: Effect of film thickness and operating temperature”, international journal of hydrogen energy, Vol. 39, pp.1185 -1191, 2014.
[21] M. Khairy, “Polyaniline–Zn0.2 Mn0.8 Fe2O4 ferrite core–shell composite: Preparation, characterization and properties”, Journal of Alloys and Compounds Vol. 608, pp. 283–291, 2014.
[22] K. Surender, J. Tukaram, P. Shinde & N. Vasambekar, “Microwave synthesis and characterization of nano crystalline Mn-Zn ferritesˮ, Adv. Mat. Lett, Vol. 4, No. 5, pp. 373-377, 2013
[23] Y. Caog, J. Dianzeng, H. Pengfei & W. Ruiying, “One-step room-temperature solid-phasesynthesis of ZnFe2O4 nanomaterials and its excellent gas- sensing property”, Ceramics International, Vol. 39, pp. 2989–2994, 2013.
[24] K. Mukherjee & S. B. Majumder, “Synthesis process induced improvement on the gas sensing characteristics of nano-crystalline magnesium zinc ferrite particlesˮ, Sensors and Actuators, Vol. 162B, pp. 229– 236, 2012.
[25] R. Deepshikha, K. Rajnish & R. K. Pandey, “Fabrication of Ni1−xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases”, Sensors and Actuators, Vol.199A, pp. 236– 240, 2013.
[26] V. D. Kapsea, S. A. Ghosha, F. C. Raghuwanshib & S. D. Kapse, “Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing”, Materials Chemistry and Physics, Vol. 113, pp. 638–644, 2009.
[27] O. Casals, T. Becker, P. Godignon & A. Romano-Rodriguez, “SiC-Based MIS Gas Sensor for High Water Vapor Environments”, Procedia Engineering, Vol. 25, pp. 1321 – 1324, 2011.
[28] M. Karmakar, B. Mondal, M. Pal & K. Mukherjee, “Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor”, Sensors and Actuators, Vol. 190B, pp. 627– 633, 2014
[29] K. Mukherjee & S. B. Majumder, “Synthesis of embedded and isolated Mg0.5Zn0.5Fe2O4 nano-tubes and investigation on their anomalous gas sensing characteristicsˮ, Sensors and Actuators, Vol. 177B, pp. 55– 63, 2013.
[30] A. Manikandan, J. Vijaya, M. Sundararajan, C. Meganathan, L. Kennedy & M. Bououdina, “Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method”, Superlattices and Microstructures, Vl. 64, pp. 118–131, 2014.
[31] C. Choodamani, G. P. Nagabhushana, B. Rudraswamy & G. T. Chandrappa, “Thermal effect on magnetic properties of Mg-Znferrite nanoparticles”, Materials Letters, Vol. 116, pp. 227–230, 2014.
[32] K. Mukherjee & S. B. Majumder, “Promising methane-sensing characteristics of hydrothermal synthesized magnesium zinc ferrite hollow spheres”, Scripta Mat6+erialia, Vol. 67, pp. 617–620, 2012.
_||_