بررسی اثر حضور نانوذرات نقره بر بلورینگی پلی اتیلن
محورهای موضوعی : عملیات حرارتیمریم ابارشی 1 * , سکینه مسگر شاهرودی 2
1 - دانشگاه پیام نور مرکز گرگان
2 - دانشگاه پیام نور گرگان
کلید واژه: نانوکامپوزیت پلی اتیلن-نقره, آسیاکاری مکانیکی, درجه ی بلورینگی,
چکیده مقاله :
در این تحقیق، به منظور بررسی نقش نانوذرات نقره در بلورینگی پلی اتیلن، ابتدا نانوذرات نقره به روش کاهش شیمیایی ساخته و با کمک روش های الگوی پراش پرتو X، طیف سنجی مرئی-فرابنفش و میکروسکوپ الکترونی عبوری شناسایی شدند. میانگین اندزه ی نانوبلورک های نقره 21/7 نانومتر تعیین شد. سپس ترکیب های مختلفی از نانوکامپوزیت های پلی اتیلن-نقره شامل 5، 10، 20 و 30 درصد وزنی نانوذرات نقره به روش آسیاکاری مکانیکی تهیه شدند. پس از شناسایی نمونه ها به کمک الگوی پراش پرتو X و میکروسکوپ الکترونی روبشی5، اثر حضور نانوذرات نقره بر درجه ی بلورینگی پلی اتیلن به روش نارا وکومیا مورد بررسی قرار گرفت. نتایج این بررسی نشان داد که با افزایش درصد وزنی نانوذرات نقره، درجه ی بلورینگی پلی اتیلن به طور قابل ملاحظه ای تغییر می کند، به طوری که با افزودن نانوذرات نقره از صفر تا 30 درصد وزنی، درجه ی بلورینگی پلی اتیلن از 63/64 به 77/67درصد افزایش می یابد.
In the current research, the effect of silver (Ag) nanoparticles on the crystallinity of polyethylene was investigated. For this purpose, Ag nanoparticles were synthesized using chemical reduction method and characterized by X-ray diffraction (XRD), UV–visible spectroscopy, and transmission electron microscopy (TEM). The mean particle size of Ag NPs was determined about 21.7 nm. The polyethylene-silver Nano composites (PESNs) containing different Ag contents (5, 10, 20 and 30 wt%) were fabricated by mechanical milling method. After the characterization of samples by XRD and scanning electron microscopy (SEM), effect of Ag nanoparticles on the crystallinity of polyethylene was investigated by Nara and Komiya method. Results show that the crystallinity of polyethylene increases from 63.64% to 77.67% as Ag NPs content increases from 0 to 30%.
[1] F. Hussian & M. Hojjati, “Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview”, J. Comos. Mater, Vol. 40, pp. 1511-1575, 2006.
[2] K. Friedrich, S. Fakirov & Z. Zhang, “Polymer Composites from Nano- to Macro-Scale”, New York, Springer, 1945.
[3] P. M. Ajayan, L. S. Schadler & P. V. Braun, “Nanocomposite Science and Technology”, WILEY-VCH Verlag, Germany, 2003.
[4] M. S. El-Eskandarany, “Mechanical alloying for fabrication of advanced engineering materials”, New York, U.S.A. NOYESPUBLICATIONS, 2001.
[5] J. B. Tracy, “Magnetic nanoparticles: synthesis, characterization, applications and a systematic study of exchange biasing”, Ph. D. Thesis, Massachusetts Institute of Technology, 2005.
[6] C. M. Koo, H. T. Ham, M. Choi, H. M. Kim & I. Chung, “Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling”, Polymer Vol. 44, pp. 681–689, 2003.
[7] M. Khrussanova, T. Mandzhukova, E. Grigorova, M. Khristov & P. Peshev, “Hydriding properties of the nanocomposite 85 wt.% Mg–15 wt.% Mg2Ni0.8Co0.2 obtained by ball milling”, J. Mater. Sci, Vol. 42, pp. 3338–3342, 2007.
[8] J. Li, F. Li & K. Hu, “Preparation of Ni/Al2O3 nanocomposite powderby high-energy ball milling andsubsequent heat treatment”, J. Mater. Process. Technol, Vol. 147, pp. 236–240, 2004.
[9] M. Abareshi, “Studyonthe morphology, crystallinity, and thermal stability of polyethylene-clay nanocomposites fabricated using high energy ball milling method”, (doctoral dissertation), Ferdowsi University, 2010.
[10] R. Abbasi, H. Kalantary, M. Yousefi, A. Ramazani, and A. Morsali, “Synthesis and characterization of Ag nanoparticles @ polyethylene fibers under ultrasound irradiation”, Ultrason. Sonochem, Vol. 19, pp. 853–857, 2012.
[11] M. Abareshi, S. M. Zebarjad & E. K. Goharshadi, “Method crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling”, J. Compos. Mate, Vol. 43, pp. 2821-2830, 2009.
[12] S. Dehnavi, A. Aroujalian, A. Raisi & S. Fazel, “Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity”, J. Appl. Polym. Sci, Vol. 127, pp. 1180-1190, 2013.
[13] L. A. Tamayo, P. A. Zapata, F. M. Rabagliati, M. I. Azocar, L. A. Munoz, X. Zhou, G. E. Thompson & M. A. Paez, “Antibacterial and non-cytotoxic effect of nanocomposites based in polyethylene and copper nanoparticles”, J. Mater. Sci: Mater. Med, Vol. 26, pp. 1-5, 2015.
[14] M. Jokar, R. Abdul Rahman, N. A. Ibrahim, L. C. Abdullah & C. P. Tan, “Melt production and antimicrobial efficiency of low density polyethylene (LDPE)-silver nanocomposite film”, Food Bioprocess Technol, Vol. 5, pp. 719-728, 2012.
[15] M. Jouni, A. Boudenne, G. Boiteux, V. Massardier, B. Garnier & A. Serghei, “Electrical and thermal properties of polyethylene/silver nanoparticle composites”, Polym. Compos, Vol. 34, pp.778-786, 2013.
[16] S. Azlin-Hasim, M. C. Cruz-Romero, M. A. Morris, E. Cummins & J. P. Kerry, “Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets”, Food Packaging and Shelf Life, Vol. 4, pp. 26-35, 2015.
[17] J. Liu, X. Li & X. Zeng, “Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste”, J. Alloy. Compd, Vol. 494, pp. 84-87, 2010.
[18] Z. Khan, S. A. Al-Thabaiti, A. Y. Obaid & A. O. Al-Youbi, “Preparation and characterization of silver nanoparticles by chemical reduction method”, Colloids Surf. B: Biointerfaces, Vol. 82, pp. 513-517, 2011.
[19] M. B. Ahmad, M. Y. Tay, K. Shameli, M. Z. Hussein & J. J. Lim, “Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent”, In. J. Macromol. Sci, Vol. 12, pp. 4872-4884, 2011.
[20] E. Fortunatia, I. Armentanoa, Q. Zhou, A. Iannonia, E. Saino, L. VisaiL. A. Berglund & J. M. Kenny, “Multifunctional bionanocomposite films of poly(Lactic Acid), cellulose nanocrystals and silver nanoparticles”, Carbohydr. Polym, Vol. 87, pp. 1596– 1605, 2012.
[21] D. G. Papageorgiou, K. Chrissafis, E. Pavlidou, E. A. Deliyanni, G. Z. Papageorgiou, Z. Terzopoulou & D. N. Bikiaris, “Effect of nanofiller’s size and shape on the solid state microstructure and thermal properties of poly(butylene succinate) nanocomposites”, Thermochim. Acta, Vol. 590, pp. 181–190, 2014.
[22] V. V. Vodnik, Z. Saponjic, J. V. Dzunuzovic, U. Bogdanovic, M. Mitric & J. Nedeljkovic, “Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites”, Mater. Res. Bull, Vol. 48, pp. 52–57, 2013.