تولید پوشش نانوکامپوزیتی Ni-Co/SiO2 به روش رسوب الکتروشیمیایی جریان مستقیم
محورهای موضوعی : عملیات حرارتیسیاوش ایمانیان 1 * , علی شکوه فر 2 , حامد بخشی 3
1 - کارشناسی ارشد مهندسی مواد، آزمایشگاه تحقیقاتی مواد پیشرفته و نانوتکنولوژی، دانشکده ی علم و مهندسی مواد دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.
2 - استاد، آزمایشگاه تحقیقاتی مواد پیشرفته و نانوتکنولوژی، دانشکده ی علم و مهندسی مواد دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.
3 - کارشناسی ارشد مهندسی مواد، آزمایشگاه تحقیقاتی مواد پیشرفته و نانوتکنولوژی، دانشکده ی علم و مهندسی مواد دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.
کلید واژه: دما, پوشش نانوکامپوزیتی, رسوب الکتروشیمیایی, سورفکتانت, میکروسختی,
چکیده مقاله :
پوشش نانوکامپوزیتی Ni-Co/SiO2 با روش اکتروشیمیایی جریان مستقیم تولید شد. آنالیز پراش اشعه ی ایکس (XRD) و تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FE-SEM) از یک پوشش آلیاژی نیکل-کبالت و پوشش نانوکامپوزیتی Ni-Co/SiO2 که همگی شرایط الکتروشیمیایی تولیدشان یکسان بود، تهیه شد و اندازه ی دانه و مورفولوژی سطح آن ها مورد مقایسه قرار گرفت و تحلیل شد. اندازه ی دانه ی پوشش نانوکامپوزیتی کمتر از پوشش آلیاژی بود و مورفولوژی سطح مربوط به پوشش نانوکامپوزیتی نسبت به پوشش آلیاژی، کروی ریزتر و صاف تر بود. سختی پوشش نانوکامپوزیتی بیشتر از پوشش آلیاژی بود. اگر دمای الکترولیت 50 درجه ی سیلیسیوس باشد، انگاه پوشش نانو کامپوزیتی Ni-Co/SiO2 ماکزیمم مقدار سختی را دارد. افزودن سورفکتانت به الکترولیت مانع از اگلومره شدن نانوذرات و در نتیجه افزایش مقدار نانوذرات در پوشش و درنتیجه افزایش میکروسختی پوشش نانو کامپوزیتی Ni-Co/SiO2 شد. در مورد پوشش تولید شده در اینجا، تاثیر SDS بیشتر از CTAB بود و مقدار بهینه ی غلظت برای SDS در الکترولیت0.3 گرم بر لیتر بود.
Nano-composite coating of Ni-Co/SiO2 is produced by the direct current electrochemical deposition method on the steel substrate. The analyze of X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) are prepared by a nickel-cobalt alloy coatings and Nano-composite coating of Ni-Co / SiO2 that the electrochemical condition were the same in all of them and their grain size and their surface morphology were compared and analyzed. The grain size of Nano-composite coating was less than the alloy coating and surface morphology of the Nano-composite coating was finer and smoother than the alloy coating. The hardness of Nano-composite coating was more than alloy coating. If the electrolyte temperature be 50 degrees Celsius, then the Nano-composite coating of Ni-Co/SiO2 will have the maximum hardness. Adding surfactant to the electrolyte prevents agglomeration of nanoparticles and thus, increases the amount of particles in the coating and the micro-hardness of the Nano-composite coating of Ni-Co/SiO2.The effect of SDS was more than CTAB for the produced coating and the most optimal value for the SDS concentration in the electrolyte was 0.3 grams per liter.
[1] G. Injeti & L. Binder, “Electrodeposition of nanostructured coatings and their characterization—a review”, Science and Technology of Advanced Materials, Vol. 9, No. 4, 043001, 2008.
[2] ر. ابراهیمی، ع. سعیدی، س. م. سید النگی و ا. اسدی، " تولید نانوکامپوزیت Ni-TiC به روش الکتروشیمیایی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال دوم، شماره پنجم، تابستان 1387.
[3] G. Anabela, et al. Electrodeposition of metal matrix nanocomposites: improvement of the chemical characterization techniques. INTECH Open Access Publisher, 2011.
[4] S. Meenu, V. K. W. Grips & K. S. Rajam, “Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles”, Applied Surface Science, Vol. 253, No. 8, pp. 3814-3824, 2007.
[5] P. Baghery, et al. “Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear”, Surface and Coatings Technology, Vol. 204, No. 23, pp. 3804-3810, 2010.
[6] Y. Yingwu, et al. “Electrodeposition and mechanical and corrosion resistance properties of Ni–W/SiC nanocomposite coatings”, Materials Letters, Vol. 61, No. 1, pp. 67-70, 2007.
[7] M. Karbasi, N. Yazdian & A. Vahidian. “Development of electro-co-deposited Ni–TiC nano-particle reinforced nanocomposite coatings”, Surface and Coatings Technology, Vol. 207, pp. 587-593, 2012.
[8] S. A. Lajevardi & T. Shahrabi, “Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings”, Applied Surface Science, Vol. 256, No. 22, pp. 6775-6781, 2010.
[9] Abdel, S. M. El-Sheikh & Y. M. Z. Ahmed. “Electrodeposited composite coating of Ni–W–P with nano-sized rod-and spherical-shaped SiC particles”, Materials Research Bulletin, Vol. 44, No. 1, pp. 151-159, 2009.
[10] F. Golestani fard, M. A. Bahrevar & E. Salahi, “Materials characterization and analysis methods”, central publication of Iran university of science and technology, Iran, 2013.
[11] H. Ikram Ul, et al. “Electrodeposition of Ni–Fe2O3 nanocomposite coating on steel”, Surface and Coatings Technology, Vol. 235, pp. 691-698, 2013.
[12] M. R. Vaezi, S. K. Sadrnezhaad & L. Nikzad. “Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 315, No. 1, pp. 176-182, 2008.
[13] M. Eslami, et al. “Effect of electrodeposition conditions on the properties of Cu–Si3N4 composite coatings”, Applied Surface Science, Vol. 300, pp. 129-140, 2014.
[14] Zh. Yue-Bo, G. G. Zhao & H. J. Zhang, “Fabrication and wear properties of co-deposited Ni-Cr nanocomposite coatings”, Transactions of Nonferrous Metals Society of China, Vol. 20, No. 1, pp. 104-109, 2010.
[15] ع. نصر اصفهانی، س. ج. دانشی و خ. فرمنش، " تاثیر پتانسیل زتا بر نحوه ی رسوب نانوذرات خنثی در پوشش های نانوکامپوزیتی حاصل از آبکاری الکتریکی منقطع"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال سوم، شماره چهارم، زمستان 1388.
[16] S. Pouladi, M. H. Shariat & M. E. Bahrololoom. “Electrodeposition and characterization of Ni–Zn–P and Ni–Zn–P/nano-SiC coatings”, Surface and Coatings Technology, Vol. 213, pp. 33-40, 2012.
[17] J. L. Wang, R. D. Xu & Y. Z. Zhang, “Influence of SiO2 nano-particles on microstructures and properties of Ni-WP/CeO2-SiO2 composites prepared by pulse electrodeposition”, Transactions of Nonferrous Metals Society of China, Vol. 20, No. 5, pp. 839-843, 2010.
[18] M. Eslami, et al. “Study on tribological behavior of electrodeposited Cu–Si3N4 composite coatings”, Materials & Design, Vol. 58, pp. 557-569, 2014.
[19] L. Yan, Y. Si-rong, L. Jin-dan, H. Zhi-wu & Y. Dong-sheng, Microstructure and wear resistance of electrodeposited Ni-SiO2 nano-composite coatings on AZ91HP magnesium alloy substrate, Trans. Yan, L. I. U., et al. “Microstructure and wear resistance of electrodeposited Ni-SiO2 nano-composite coatings on AZ91HP magnesium alloy substrate, “Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 483-488, 2011.
[20] V. Zarghami & M. Ghorbani, “Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings”, Journal of Alloys and Compounds, Vol. 598, pp. 236-242, 2014.
[21] F. Kılıç, et al. “Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 419, pp. 53-60, 2013.
[22] Y. Yang & Y. F. Cheng, “Fabrication of Ni–Co–SiC composite coatings by pulse electrodeposition—Effects of duty cycle and pulse frequency”, Surface and Coatings Technology, Vol. 216, pp. 282-288, 2013.
[23] م. رستمی، ر. ابراهیمی و ا. ساعتچی، " اثر افزایش مقدار نانوذرات SiC، بر سختی پوشش های نانوکامپوزیتی Ni-SiC-Gr، حاصل از آبکاری الکتریکی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال ششم، شماره اول، بهار 1391.
[24] B. Tushar, “Electrodeposition of nickel composite coatings”, Diss. Oklahoma State University, 2010.
[25] Z. Shahri & S. R. Allahkaram, “Effect Of Particles Concentration and Current Density ON The Co/HEXAGONAL BORON NITRIDE NANO-COMPOSITE Coatings Properties”, Iranian Journal of Materials Science & Engineering, Vol. 9, No. 4, 2012.