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ABSTRACT  

Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various 

civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient 

and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified 

into power and binomial equations. Binomial equation is more accurate in a wide range of velocity 

changes in comparison to power equation and its validity has been verified by dimensional analysis 

and Navier–Stokes equations. But since velocity changes are rather limited in engineering problems, 

power equation would be accurate enough. Non-Darcy flow analysis for the cases in which 

streamlines are almost parallel has been investigated by numerous investigators in pressured and 

free surface conditions. Radial flows are accompanied by streamlines contraction. Contracted 

streamlines in free-surface radial flows result in flow inflation, i.e. flow depth through the path 

increases significantly in comparison to parallel flows. This phenomenon makes free surface radial 

flows behave completely different from other types of flows. To investigate the behavior of free-

surface radial flows in coarse porous media, power and binomial equations are analyzed in this 

paper. Furthermore, several experiments have been conducted by setting up a semi-cylindrical 

experimental device with a diameter and height of 6 and 3 meters, respectively. Results indicate that 

free-surface radial flows behave different from pressured radial flows and Non-Darcy flows in 

which streamlines are relatively parallel. 
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1. Introduction 

Investigating flow in coarse porous media 

has become a popular field of study in recent 

years due to its wide application in civil 

engineering, oil and gas, geology, and other 

related fields. Non-linear flows through 

coarse porous media can be divided into two 

main categories. In the first category, 

streamlines are almost parallel so that there 

is no curvature or contraction of streamlines 

in the plan view. This type of flow is found 

in both pressurized and free-surface modes. 

Flows through granular confined alluvial 

aquifers and detention dams are classified in 

this category. Many researchers have in-

vestigated parallel flows through coarse 
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porous media in previous decades. Based on 

experimental investigations, researchers like 

Scheidegger (1963); Ward (1964); Dudgeon 

(1966); Ahmed and Sunada (1966); Hansen 

et al. (1994); Wilkins (1956); Li et al. (1998); 

Martins (1990); Bazargan and Shoaei (2006) 

and Bazargan and Zamanisabzi (2011) have 

developed equations for both linear and non-

linear flows. Venkataraman and Rao (1998) 

introduced a diagram similar to Moody 

diagram for pipe flows, representing the 

variations of friction coefficient (fk) and 

dimensionless Reynolds number (Rk) in 

coarse porous media. 

In the second category of Non-Darcy 

flows, streamlines are contracted during the 

path and are known as converging flows. 

Like parallel flows, these flows are found in 

pressurized or free-surface modes. Flow 

through gravel filters used in water 

treatment plants is an example of 

pressurized converging flows. Other 

researchers like Right (1958); 

MacCorquodale (1970); Nasser (1970); 

Reddy (2006); Thiruvengadam and Kumar 

(1977); Reddy and Mohan (2006) and 

Dudgeon (1967) performed experiments to 

find effective parameters on pressurized 

converging flows. They believed that flow 

convergence played an important role in 

variation of “b” coefficient in binomial 

equation. Venkataraman and Rao (2000) 

having validated the Forchheimer law for 

flow through coarse porous media with 

converging boundaries proposed 

coefficients to modify a and b parameters in 

binomial equation. Various equations to 

analyze pressurized non-linear parallel and 

conver-ging flows are presented so far and 

the most significant equations are 

summarized in continue. 

2. Applied Equations to Analyze Non-

Darcy Parallel Flows 

2. 1. Power Equation   

Power equation is presented as Missbach 

equation: 

nmvi                                                         (1) 

Where v is the mean flow velocity, i is 

hydraulic gradient, and m and n are constants 

which are functions of fluid and porous media 

characteristics such as grading, roughness, 

shape and porosity. 

2. 2. Binomial Equation 

Proposed by Forchheimer, binomial 

equation is as follows: 

2bvavi                                                   (2) 

Where v and i are the same as in Equation 

(1), and a and b are functions of physical 

charac-teristics of the media and fluid. 

Ward (1964) and Ahmed et al. (1969) 

purposed the following equations to describe a 

and b parameters using dimensional analysis 

and Navier–Stokes equations, respectively. 

gk
a


                                                        (3) 

kg

c
b w                                                     (4) 

2cdk                                                        (5) 

Where ν is kinematic viscosity of the fluid 

(m
2
/s), k is the intrinsic permeability of the 

particles (m
2
), g is acceleration of gravity 

(m/s
2
); Cw is a constant which is a function 

of media characteristics such as particle 

size, shape, and porosity, C is non-

dimensional constant of the material and d 

is characteristic length parameter (m) which 
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is an indicator of pore effective diameter. 

Using Darcy–Weisbach equation, Ward 

proposed Equation (6) to describe friction 

coefficient and Reynolds Number in coarse 

porous media. 

2k

kig
f


                                                   

(6) 

Where fk is friction coefficient of porous 

media and k is length parameter (m) in 

Darcy–Weisbach equation. Based on 

Equation (2), (3), (4), and (6): 

w

k

k C
R

1
f                                                (7) 

Where Rk is dimensionless Reynolds 

number calculated by using Equation (8) as 

follow. 



kv
Rk                                                     (8) 

Having achieved parameter a from 

Equation (3), k could be calculated. 

Equation (7) is known as Ward equation in 

coarse porous media. Based on the 

assumption of flow similarity through 

porous media with pressurized flow in 

pipes, Stephenson (1969) employed Darcy–

Weisbach equation to determine hydraulic 

gradient in coarse porous media and 

concluded: 

Dgn

v
fi

2

2

st                                                (9) 

t

e

st f
R

800
f                                             (10) 

 /vDRe                                               (11) 

Where v is average seepage velocity (m/s), 

g is acceleration of gravity (m/s
2
), n is 

porosity; D is length characteristic (m) which 

is usually considered as particle‟s mean 

diameter. fst is Stephenson friction coefficient 

and is defined by Equation (10), where Re is 

dimensionless Reynolds Number calculated by 

Equation (11). The value of ft in Equation (10) 

is ft ≈ 1 for smooth and polished particles, ft ≈ 

2 for semi-crushed particles and ft ≈ 4 for 

rough angular (crushed) particles. 

3. Study on the Equations used to analyze 

pressurized Non-Darcy radial flows 

3.1. Power Equation 

In this form m and n are assumed to be 

determined by characteristics of the porous 

media and are independent of hydraulic 

properties of the flow. Figure 1 shows a 

schematic view of the experimental setup for 

pressurized radial flow permeameter. 

Pressurized radial flow parameters are 

introduced in Figure 2. In this figure, P1 and 

P2 are piezometric pressures at radius R1 and 

R2, respectively, Ɵ is convergence angle, W 

is flow depth and dhl is the energy loss along 

a strip of porous media with a radius of dR. 

Based on Power Equation the following 

equations may be developed for a given 

strip of the porous media with a thickness 

of dR. 

dR
WR

Q
mdh

n

l 










                                   (12) 

dR
R

1

W

Q
mdh

nn

l 


















                              (13) 

Q is flow rate and
WR

Q


 is flow velocity at 

radius R. By integrating the right hand side 

between R1 and R2 and integrating the left 

hand side of Equation (13) between h1 to h2: 

Where 1 and 2 subscripts corres-pond to the 

value of the parameters at radius R1 and R2, 

respectively:  
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.  

 
Fig. 1. Schematic view of the pressurized radial flow permeameter, Reddy, N.B. (2006) 

 
Fig. 2. Parameters of pressurized radial flow, Venkataraman, P. and Roma Mohan Rao, P. (2000) 
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Dividing both sides of Equation (15) by 

(R2-R1): 

  12

1n

2

1n

1

n

12
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RR1n
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1
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1
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Since
12
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RR

hh
i




 , then: 
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Dividing and multiplying the right side 

of Equation (17) by  naveR : 
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Considering
2
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 , then: 
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Since
WR

Q
v

ave
 , then: 
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     (20) 

As can be seen from Equation (20), power 

of v, i.e. n remains unchanged, while m is 

affected by a coefficient which is a function of 

media geometry and n parameter. Further 

investigations revealed that the aforemen-

tioned coefficient value for common values of 

R1, R2, and n is close to 1. That makes it 

possible to use Power Equation for both 

parallel and radial flows, equally. Table 1 

shows this for experiments performed by 

Reddy (2006). As can be seen, the term in 

brackets in Equation (20) is close to 1 

corresponding to different values of n. 

3.2. Binomial Equation 

Venkataraman and Rao (2000) investi-

gated pressurized radial flows through coarse 

porous media. Because values of a and b 

parameters in Forchheimer equation, like m 

and n in power equation for parallel flows are 

functions of porous media characteristics, 

Venkataraman and Rao found that a and b 

calculated values in each experiment were 

different from the previous experimental 

results. So they looked for a solution to 

reduce changes of these parameters. As a 

result, they proposed a binomial equation 

with modified coefficients (Venkataraman P. 

and Roma Mohan Rao P. 2000). By applying 

these modified coefficients a good agreement 

was achieved between theoretical and 

experimental data. Using the following 

equation and considering Figure 1, 

Venkataraman and Rao extracted C1 and C2 

to modify a and b parameters (coefficients of 

Forchheimer equation for parallel flows) as 

Equation (24) and (25). 

Assuming P1 and P2 as piezometric head 

for R1 and R2, respectively (Figure 1), ac and 

bc coefficients were obtained for a and b in 

converging flows. In these equations, Ɵ is 

convergence angle, W is flow depth, and dhl 

is energy loss through a strip of porous media 

with a radius of dR. 1 and 2 subscripts 

correspond to parameters at R1 and R2, 

respectively. Q is flow discharge and 
WR

Q


 is 

flow velocity at radius R. 

dR
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Q
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Q
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
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
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

                   (21) 

By integrating the right hand side for R1 

to R2 and integration of the left hand side of 

Equation (21) for h1 to h2: 

    
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
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2

1
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W

bQ
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R
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W

Q
hh
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Dividing both sides of Equation (23) by 

(R2-R1), hydraulic gradient (ic) of the flow 

between P1 and P2 is achieved in porous 

media with converging boundaries: 

2

1c1cc vbvai                                            (24) 
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Table. 1. The coefficient of m in power equation of Equation (20) corresponding to different values of parameter 

n  for experiments performed by Reddy (2006). 

Coefficient for m in Power Equation Coefficient for m in Power Equation 

R1(m) R2(m) n=1.25 n=1.50 n=1.75 n=2.00 R1(m) R2(m) n=1.25 n=1.50 n=1.75 n=2.00 

0.100 0.050 1.056 1.076 1.099 1.125 0.800 0.750 1.008 1.008 1.009 1.010 

0.150 0.100 1.019 1.026 1.033 1.042 0.850 0.800 1.009 1.010 1.010 1.011 

0.200 0.150 1.010 1.013 1.017 1.021 0.900 0.850 1.010 1.011 1.012 1.012 

0.250 0.200 1.006 1.008 1.010 1.013 0.950 0.900 1.012 1.012 1.013 1.013 

0.300 0.250 1.004 1.005 1.007 1.008 1.000 0.950 1.013 1.013 1.014 1.015 

0.350 0.300 1.003 1.004 1.005 1.006 1.050 1.000 1.014 1.014 1.015 1.016 

0.400 0.350 1.002 1.003 1.004 1.004 1.100 1.050 1.015 1.015 1.016 1.017 

0.450 0.400 1.002 1.002 1.003 1.003 1.150 1.100 1.016 1.016 1.017 1.017 

0.500 0.450 1.001 1.002 1.002 1.003 1.200 1.150 1.017 1.017 1.018 1.018 

0.550 0.500 1.001 1.001 1.002 1.002 1.250 1.200 1.017 1.018 1.018 1.019 

0.600 0.550 1.002 1.003 1.003 1.004 1.300 1.250 1.018 1.019 1.019 1.020 

0.650 0.600 1.004 1.004 1.005 1.005 1.350 1.300 1.019 1.019 1.020 1.020 

0.700 0.650 1.005 1.006 1.006 1.007 1.400 1.350 1.019 1.020 1.021 1.021 

0.750 0.700 1.007 1.007 1.008 1.008 1.450 1.400 1.020 1.021 1.021 1.022 

 

aca 1c                                                     (25) 

bcb 2c                                                      (26) 

 

   
  1RR

RRlnRR
c

21

2121
1


                                (27) 

2

1
2

R

R
c                                                     (28) 

Developing the improved coefficients, Rao 

and Venkataraman only considered flow 

entrance velocity of each interval (V1) in 

Forchheimer equation. This approach, the 

authors believe, may lead to considerable 

amount of uncertainty and approximation. 

They believed if mean values of piezometric 

heads in both sides of the interval are used to 

calculate the hydraulic gradient, then the mean 

velocity in the same interval should be used 

while working with Forchheimer equation. 

Considering the mean velocity and following 

the mentioned sequence, C1 and C2 may be 

calculated by Equation (29) and (30). 

 
 
 21

21
211

RR2

RR
RRlnc




                            (29) 

 

21

2

21
2

RR4

RR
c


                                          (30) 

4. Study on the Equations used to analyze 

free-surface Non-Darcy radial flows 

This paper is the product of an extensive 

experimental study on free-surface radial 

flows. A flow permeameter was established in 

hydraulic laboratory of Bu-Ali Sina Uni-

versity, Hamedan, Iran. The model was semi-

cylindrical with a diameter of 6 meters and a 

height of 3 meters. Model dimensions were 

selected such that size reduction effect that 

usually exists in experimental models due to 

financial and space limitations did not exist 

(Figures 3 and 4). Piezometric grids were 

implanted within the media to measure 

piezometric head. To increase the accuracy of 

piezometric head monitoring, piezometer grids 

were installed on five equally-spaced vertical 

sheets. Totally 210 piezometers were im-

planted on sheets to monitor piezometric head 

distribution. 

Applying the same analytical approach used 

in pressurized radial flows to analyze free-

surface non-Darcy flow through coarse porous 
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Fig. 3. Schematic of the permeameter. 

 

Fig. 4. Inside view of the permeameter. 

A B

h1

h2

D C

R1

Hdown             Qdown    

R2

Hup

 
Fig. 5. Longitudinal profile of a free-surface radial flow presenting parameters influencing a and b factors in 

quadratic and m and n in power law equations. 



Comparison of Binomial and Power …, J. Sadeghian et al. 

72 

 

media, and considering P1 and P2 as 

piezometric heads at R1 and R2, respectively 

(Figures 5), the following equations are 

developed to describe acf and bcf coefficients 

instead of a and b for converging non-linear 

flows in coarse porous media with free 

surface. In these equations, is convergence 

angle, h is flow depth at radius R, and dhl is 

energy loss along a strip of porous media with 

a radius of dR. Q is flow discharge and 
WR

Q


 

is flow velocity at radius R. 
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Q
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2

l 
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Since the flow depth (h) is a function of 

water surface, and based on the fact that 

longitudinal profile of water surface usually 

has a parabolic shape, so h could be written 

as a function of R as follows. 

CBRARh 2                                         (35) 

Where A, B, and C are coefficients of the 

parabolic equation. Substituting Equation 

(35) in Equation (34): 
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Energy loss may be calculated within 

this interval by integrating between R1 to R2 

in which flow depth varies from h1 to h2. 

Subscripts 1 and 2 correspond to the 

parameter values at R1 and R2, respectively. 
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                 (39) 

Dividing both sides of Equation (39) by 

(R1-R2), hydraulic gradient (icf) of free-

surface flow in converged porous media is 

obtained between P1 and P2. 
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By defining Vave, h , and R , as: 
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Substituting Equation (41), (42), and (43) 

into Equation (40): 
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Results show that if h1 and h2 variations 

would be small from R1 to R2, then 

Equation (49) and (50) could be replaced by 

Equation (29) and (30). Similarly, by 

ignoring h1 and h2 variations within the 

range of R1 to R2, Equation (20) could be 

used as a power equation to analyze non-

Darcy flows through coarse porous media 

with free-surface. The term inside brackets 

in Equation (20) corresponding to different 

values of parameter n in power equation is 

presented in table 2.  

As can be seen, the term inside brackets 

in Equation (20) was found to have values 

close to 1. 

Table 2. The term inside the brackets of Equation (20) corresponding to different  

values of parameter n in power equation 

Coefficient for m in power Equation 

R1 R2 N=1.25 N=1.50 

0.25 0.50 1.06 1.08 

0.50 0.75 1.02 1.03 

0.75 1.05 1.01 1.02 

1.05 1.40 1.01 1.01 

1.40 1.80 1.01 1.01 

1.80 2.25 1.01 1.01 

2.25 2.75 1.00 1.01 

 

5. Conclusions 

Flow through coarse porous media can be 

categorized into parallel and convergence 

flows. Investigations showed that flow in 

both categories is a non-Darcy flow and 

binomial and power equations are still valid. 

Although binomial equation is more 

accurate in a wide range of velocity changes 

in comparison to power equation, since the 

range of velocity changes is rather limited in 

engineering problems, power equation 

would be of enough accuracy. So power 

equation is considered as the base equation 

in numerical models. Those models that 

were established based on the developed 

Parkin equation in Cartesian coordinates, 

and the model developed in this study in 

cylindrical coordinates all consider the 

power equation as the base equation. 

Contraction of streamlines is reported in 

both pressurized converging and free-surface 

radial flows. Contracted streamlines in radial 



Comparison of Binomial and Power …, J. Sadeghian et al. 

74 

flows with free-surface condition lead to 

flow inflation and as a result, flow depth 

increased significantly compared to parallel 

flow condition. In pressurized converging 

flows, inflation cannot occur due to the 

existence of the wall margins. Compared to 

other types of the non-linear flows, free-

surface radial flows are subjected to greater 

values of velocity variations to hydraulic 

gradient variations, and vice versa in the 

case of parallel and pressurized converging 

flows. It seems that this fact results in a 

significant difference in flow behavior of 

free-surface radial flows compared to other 

types of flows. More than 1500 piezometric 

heads were recorded during this work. 

Having analyzed the experimental results of 

this study, it was concluded that applying the 

initial form of power equation will lead to 

better results compared to Forchheimer 

equation. Experimental results also confirmed 

this analytical conclusion. Forchheimer 

equation could be used in these types of flows 

by applying modification coefficients. 
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