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ABSTRACT 

Sedimentation in reservoirs is an important issue that should be considered for the reservoirs 

operation and useful life. In this study, application of the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and Artificial Neural Network (ANN) in prediction of the sediment release from the 

bottom outlet using semi-cylinder for different variables was evaluated. Dimensionless parameters 

such as dimensionless length and height of the gap and water level were considered. The results 

indicated that both ANFIS and ANN had an acceptable performance in this matter. The best 

performance of the ANFIS and ANN models had root mean square errors equal to 3.95×10
-5

 and 

4.34×10
-5

, respectively.  
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1. Introduction  

Sedimentation is one of the important 

issues that should be considered in useful life 

and operation of the reservoirs. In natural 

rivers, the amount of input and output 

sediments in a time interval is in balance. 

However, this sediment balance is lost by 

construction of the dams in river paths and the 

flow velocity in rivers is reduced so that the 

reservoirs act as sediment traps. Sediment 

flushing is necessary to maintain the long-

term storage in reservoirs. If sediment 

washing is done correctly, the necessity of 

building new dams is decreased and 

additional costs could be avoided. In 

reservoirs, flushing can be classified into 

pressurized and free flow flushing or draw-

down. During pressurized flushing, water is 

released through the bottom outlets while the 

water level in the reservoir is kept above the 

outlet. In pressurized flushing, a very limited 

area in the reservoir is cleared from 

sediments. 

In recent years, artificial intelligent 

methods have been widely used for prediction 

purposes in many fields. Realizing the 

nonlinear behavior of the systems and 

phenomenon is the most important advantage 

of these methods. This is why they are mostly 

applied to models in which there is not exact 

knowledge about their behavior. Construction 

of the physical models is costly and time 

consuming, so artificial intelligent methods 

could be a good choice in hydraulic model 

analysis. Neural networks, Neuro-fuzzy 

systems and genetic programming methods 

are some of the most important artificial 

intelligent methods, but limited studies have 

been done in hydraulic model analysis using 
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these methods. Some of studies in this field 

are mentioned in the following paragraph. 

ANNs have been reported to provide 

reasonably good solutions for hydraulic 

engineering problems, particularly for cases 

of highly nonlinear and complex relationship 

among the input-output pairs in 

corresponding data (Guven and Gunal, 2008, 

Azamathulla et al., 2010, Azamathulla and 

Ghani, 2010). Chang and Chang (2001) used 

the ANFIS to predict the water level in 

reservoirs. An integrated stage–discharge–

sediment concentration relation for two sites 

on the Mississippi River in the United States 

was studied by Jain (2001) using ANN. 

Liriano and Day (2001) predicted depths of 

scour at culvert outlets. Kambekar and Deo 

(2003) estimated the scour geometry around 

groups of piles in the ocean.  Azinfar et al. 

(2004) applied the ANN to forecast scour 

depths at the sluice gate. ANFIS was 

employed by Kazeminezhad et al. (2005) and 

Mahjoobi et al. (2008) to predict wave 

characteristics. Sediment concentration was 

predicted by Kisi [2005] using ANFIS. 

Tayfur and Guldal (2006) used ANN to 

estimate total daily suspended sediments in 

natural rivers. Estimation of scour around 

hydraulic structures was done by Azamathulla 

et al. (2008) using artificial neural networks 

and ANFIS. ANNs have prediction, 

flow/pollution simulation, and parameter 

identification features (ASCE Task 

Committee, 2000). ANN has also been used 

for designing the time-varying groundwater 

remediation by Chu and Chang (2009). 

Evaluation of total sediment load formulae 

was done by Yang et al. (2009) using ANN. 

Analysis of the lateral outflow over the 

rectangular-side weirs located on a straight 

channel was conducted by Bilhan et al. (2010) 

using two different neural networks. 

Cigizoglu (2010) used ANN approach to 

predict suspended sediment concentrations in 

northern England. He applied discharge and 

sediment concentration parameters in his 

study. Application of the soft computing 

approaches of ANN-RBF and ANFIS to 

predict the local scour depth at culvert outlets 

was described by Azamathulla et al. (2011). 

The objective of this study is to develop an 

improved predictive model for estimation of 

the scour depth using ANFIS and ANN 

methods. Dimensionless parameters such as 

dimensionless length and height of the gap 

and water level were considered. In order to 

compare the results, simulations were done 

using both ANFIS and ANN methods. The 

acceptable results of ANFIS and ANN 

systems are also demonstrated. 

2. Modeling and Analysis of the Methods 

2.1. Experimental Model 

Experiments were conducted at the 

Hydraulic Laboratory of Water Engineering 

Department, University of Tabriz. The 

physical experiments were carried out in a 

rectangular cube-shaped reservoir. The 

reservoir has a length of 120 cm, a width of 

100 cm and a height of 85 cm. Sediments 

were filled up to the lower edge of the valve 

located 28 cm above the bottom of the model. 

The bottom outlet of the basin was a circular 

orifice (sluice gate) of a 5.08 cm (2 inch) 

diameter and a gate valve as the discharge 

regulator (Fig. 1). After passing the lower 

outlet, sediments entered the sedimentation 

basin. The flow returned from the 

sedimentation basin to the main reservoir and 

the volumetric flow discharge was measured. 

Non-cohesive sediments with a median 

sediment diameter of 0.51 mm and a density 

of 1700 kg/m3 were used. For each model, 

experiments were conducted for three water 

levels of 15, 30 and 50 cm with a constant 

flow discharge of 2 lit/s. AS Semi-Cylindrical 

structure was applied in front of the bottom 

outlet to create and reinforce the vortex flow. 

By placing this structure, the vortex flow was 
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created and more sediments were discharged 

from the front part of the bottom outlet. A gap 

was created under the Semi-Cylinder to create 

the vortex flow. At first, experiments were 

conducted for Semi-Cylinders with diameters 

of 12.7 and 15.24 cm and gaps of different arc 

lengths (La) and constant height (Ha) on the 

Semi-Cylinders. The optimal arc length was 

obtained for which the maximum sediment 

discharge occurred. In optimal arc length, the 

height of the gaps was changed in such a way 

that in each experiment, the top of the gap 

was in the same level of the accumulated 

sediments. After finding a suitable height and 

arc length, experiments were conducted for 

Semi-Cylinders with diameters of 5.08, 7.62, 

10.16, 12.7, 15.24, 20.82 and 25.4 cm. A total 

of 93 experiments were performed for all of 

the models for 3 different water levels. The 

experimental setup and location of the Semi-

cylinder structure are illustrated in Fig. 2. 

 

Fig. 1. Experimental setup 

Fig. 2. Location of the Semi-cylinder structure in front 

of the outlet. 

2.2. Theory and Dimensional Analysis 

By opening the valve, the flushing cone is 

formed in front of the gate. Sediment 

discharge (Qs) is a function of different 

parameters including water level in the 

reservoir (Hw), acceleration due to gravity (g), 

density of the deposited sediments ( s ), 

water density ( w ), sediments median 

diameter ( 50d ), diameter of the bottom outlet 

(D), dynamic viscosity of the fluid ( ), 

diameter of the Semi-Cylinder structure (Da), 

gap height at the bottom of the Semi-cylinder 

(Ha) and gap length on the Semi-cylinder 

(La). It can be written as: 

0),,,,,,,,,,( 501 aaawsws LHDDdgHQf           (1)  

Using the Buckingham π theorem, Eq. (1) 

may be written as: 
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Since s , w , 50d and D were constant in all 

the experiments and parameter 
5.15.0 Dgw


 

represents the effect of the viscosity 

(Reynolds number was about 35000 ), so the 

effect of these parameters can be neglected 

and Eq. (2) can be rewritten as: 
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Ranges of the experimental dimensionless 

parameters are shown in Table 1. 

Table 1. Experimental dimensionless parameters 

Hw/D La/D Ha/D Qs/D2.5g0.5×105
 

Dimensionless 

parameters 

2.95-

9.84 
0.5-3 0.25-3 2.38-100.11 

Range of 

variations 

2.3. Neural Networks 

The neural network is a tool for data 

modeling in which the structure is inspired by 
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human brain biological networks. These 

networks are able to learn from examples and 

generalize and this is one of the similarities of 

these networks to human brain. In addition, 

their ability to represent both linear and 

nonlinear relationships is one of the 

advantages of these networks. The Classifica-

tion, Prediction and noise reduction are some 

of the important applications of these 

networks. Neural networks are composed of 

many neurons that co-operate to perform the 

desired function. The output of a neuron is a 

function of the weighted sum of the inputs 

plus a bias. The function of the entire neural 

network is simply the computation of the 

outputs of all the neurons. The measured data 

are used to train the neural networks. By 

processing the measured input and output 

data, neural networks learn the general rules. 

By applying new inputs, the network analyzes 

data and generates outputs according to the 

pre-generated rules.  

One of the most common networks is the 

Multi-Layer Perceptron. In these networks, 

unsupervised learning method is used to train 

the network. These networks contain input, 

output and hidden layers. The outputs of one 

layer act as inputs to the next layer. The 

structure of a MLP network is illustrated in 

Fig. 3. 

As shown in Fig. 3, inputs that are fed into 

the input layer are multiplied by weights and 

entered to the hidden layer. They are summed 

and processed by an activation function. The 

outputs of a hidden layer enter the next one. 

Finally, the data leaves the last hidden layer 

and is applied to the output layer to produce 

the network output. One of the common 

methods for network training is back 

propagation that is a supervised training 

method. The algorithm of this method is 

based on minimizing the error of the network 

using derivatives of the error function. 

A 3-layer MLP network with back 

propagation training method was used in this 

paper. In the proposed method, sensitivity 

analysis of the model is based on the number 

of the hidden layer neurons and application of 

different transfer functions to different input 

variables. Seventy percent of the experimental 

data was used for network training and the 

remaining 30% of the experimental data was 

used for testing the network. A program code, 

including neural network toolbox was written 

in MATLAB language for ANN simulation. 

2.4. Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 

Jang (1993) presented a learning procedure 

for the fuzzy inference system (FIS) that uses 

an ANN learning algorithm for constructing a 

set of fuzzy if-then rules with appropriate 

membership functions (MFs) from specified 

input-output pairs. A basic structure of 

ANFIS is illustrated in Fig. 4. 

 

 

 

 

Fig. 3. Structure of a MLP network (Kisi et al., 2009) 
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Fig. 4. Basic structure of the ANFIS (Kisi et al. 2009)

 

To build up a fuzzy system, the linguistic 

variables should be first provided in addition 

to the numerical variables. Then, the system 

requires If/Then fuzzy rules to qualify simple 

relationships between the fuzzy variables. A 

typical rule set with two fuzzy If/Then rules 

in a first-order Sugeno system can be shown 

as follows: 
Rule 1: If x is A1 and y is B1, then 

f1=p1x+q1y+r1                                                                             (4) 

Rule 2: If x is A2 and y is B2, then 

f2=p2x+q2y+r2                                                                             (5) 

where x and y refer to the input and output 

variables, respectively, A and B terms denote 

the linguistic terms of the precondition part 

with MF. If part of the rule, ‘x is A’, is called 

the premise, while then part of the rule, ‘y is 

B’, is called the consequent and p, q and r 

indicate the consequent parameters (Sayed et 

al., 2003). A detailed description of ANFIS 

can be found in Jang (1993). 

Similar to ANN, 70% of the whole data set 

was applied to train the ANFIS system. Also 

30% of the data was used to test the system. 

A program code including the fuzzy toolbox 

was written in MATLAB for ANFIS 

simulation. 

2.5. Model Evaluation Indexes 

To evaluate the Neuro-fuzzy system 

results, the coefficient of determination (R
2
) 

and root mean square error (RMSE) indexes 

were used as follows: 
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where x and y indicate dimensionless 

amounts of the experimental sediment 

discharge and the predicted sediment 

discharge by the model, respectively. 

3. Results and Discussion 

The structure and error of Neuro-fuzzy 

model for different input patterns in 

predicting the dimensionless sediment 

discharge are shown in Table 2. 
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Table 2. Structure and error indexes in Neuro-fuzzy 

model for different patterns of inputs in test period 

RMSE 

       
R

2
 

Number of 

membership 

functions 

Membership 

function 

Input 

pattern 

Pattern 

number 

7.20 0.84 2 Triangular Ha/D 1 

6.98 0.85 2,2 Triangular 
Ha/D, 

La/D 
2 

95 0.94 2,2,3 Triangular 

Ha/D, 

La/D, 

Hw/D 

3 

 

From Table 2 it can be seen that pattern 3 

has the minimum prediction error in which all 

of the input variables are considered in 

sediment discharge prediction. In this case, R
2 

and RMSE were 0.94 and 51095.3  , 

respectively.  

To find an optimal structure for the Neuro-

fuzzy system for a specific pattern, different 

membership functions such as triangular and 

Gaussian functions were applied. The results 

showed that for triangular membership 

functions, RMSE has the minimum value and 

this membership was selected as the optimal 

structure for the system. In pattern 3, the 

optimal structure has 2 members for variables 

Ha/D and La/D, and 3 members for variable 

Hw/D. The results of ANFIS prediction for 

different input patterns of dimensionless 

sediment discharge are illustrated in Fig. 5. 

 

 

(a) pattern 1                                                                       (b) pattern 2      

 
(c) pattern 3 

Fig. 5. Observed versus predicted sediment discharges for different patterns using ANFIS: (a) pattern 1, (b) pattern 2, 

and (c) pattern 3. 
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As shown in Table 2 and Fig. 5, by adding 

the dimensionless parameter of La/D to the 

model (pattern 2), model performance became 

better considering the error indexes but with 

Subtle changes. Addition of the Hw/D 

parameter (pattern 3) improved the Neuro-

fuzzy system performance in predicting the 

sediment discharge. In addition, the values of 

R
2
 and RMSE improved by 10% and 43%, 

respectively, with respect to pattern 2. 

The optimal structure and error indexes of 

the neural network model for different input 

patterns in predicting the dimensionless 

sediment discharge are shown in Table 3. 

Like ANFIS, pattern 3 was the best pattern for 

the neural network model. Performance 

indexes of R
2
 and RMSE obtained for the test 

period were 0.94 and 51034.4  , respective-

ly. In the neural network, the optimal model 

was obtained by changing the activation 

functions and number of the hidden layer 

neurons. For all the patterns, the log-sigmoid 

and linear functions were considered as the 

best activation functions between input-

hidden layer and hidden-output layer, 

respectively. 250 epochs were used to train 

the network. The optimal number of neurons 

in hidden layer for different patterns is shown 

in Table 3. As shown in this table, the number 

of the neurons for the best pattern (pattern 3) 

is 6. The results showed that by using pattern 

1, which contains only the dimensionless 

parameter Ha/D, acceptable results were 

obtained. By adding La/D and Hw/D 

parameters to the model, the performance of 

the system significantly improved.  

Fig. 5 illustrates the distribution diagram 

of the dimensionless sediment discharge for 

the observed data and data obtained by 

simulation with ANN for different input 

patterns. The results of these diagrams were 

in full agreement with the results presented in 

Fig. 5. 

By comparing the results rpresented in 

Tables 2 and 3 and Figs. 5 and 6 it can be 

concluded that the Neuro-fuzzy model 

showed a better performance than the neural 

network model considering the error indexes 

for different patterns. Considering R
2

, both 

models showed almost the same performances 

but considering RMSE, the error decreased by 

9% in the Neuro-fuzzy model. 

Table 3. Structure and error indexes of the neural network model for different patterns of inputs in test period 

RMSE        R2 
Number of neurons in hidden 

layer 
Input pattern Pattern number 

7.56 0.82 1 Ha/D 1 

7.33 0.84 4 Ha/D, La/D 2 

4.34 0.94 6 Ha/D, La/D, Hw/D 3 

 

 

 (a) Pattern 1                                                                   (b) Pattern 2 

Fig. 6.  Observed versus predicted sediment discharges for different patterns using ANNs: (a) pattern 1, (b) pattern 2, 

and (c) pattern 3. 
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(c) Pattern 3 

Fig. 6. Continued. 

4. Conclusions 

In this paper, performance of the Neuro-

fuzzy system in prediction of the 

dimensionless sediment discharge was 

evaluated and results were compared with the 

neural network model results. Different input 

patterns including dimensionless parameters 

such as height and length of the Semi-cylinder 

and water depth were used to predict 

dimensionless sediment discharge. For both 

models, pattern 3 that contained all of the 

Hydraulic parameters showed the best 

performance. In this pattern, R
2
 and RMSE 

indexes for Neuro-fuzzy model were 0.94 and
51095.3  , respectively and for neural 

network model were 0.94 and 51034.4  , 

respectively. By comparing the results of the 

Neuro-fuzzy and neural network models it 

can be concluded that the Neuro-fuzzy model 

is a better one in prediction of the 

dimensionless sediment discharge by which 

the RMSE index decreased by 9%. 
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