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ABSTRACT 

The simplest water diversion method in irrigation systems is using intakes. Measuring the mean 

velocity is one of the essential hydraulic parameters in increasing the efficiency of the intake. In this 

study, the mean velocity was predicted for different width ratios of an intake using ANN-MLP 

neural network model. In order to do that, the flow field within a 90-degree intake was first 

simulated three-dimensionally using ANSYS-CFX. The neural network used in this study includes 

3 inputs; longitudinal coordinate (Y
*
), ratio of the branch channel to the main channel (wr), and 

mean velocity of the middle line of the channel cross section (V
*

line). V
*

line is the average velocity in 

the vertical column of the branch channel, which has been measured by the ANSYS-CFX model 

after the validation. Comparison of the ANSYS-CFX results with the experimental ones indicated 

that this model, with mean Root Mean Squared Error (RMSE) of 0.013, has a proper accuracy in 

simulating the characteristics of the flow field within the intake. In addition, comparison of the 

obtained results from ANN-MLP model and the experimental results indicated that this model, with 

mean determination coefficient (R
2
) of 0.948, has a high performance in predicting the mean 

velocity of open channel intakes. 
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1. Introduction  

Diverting water from rivers and main 

channels is done through the intake for the 

purposes such as water delivery for 

agricultural objectives, urban wastewater 

collection systems and generating energy. A 

completely complex flow is formed as the 

flow enters the branch channel from the main 

channel (Seyediyan et al., 1389, Shamlou et 

al., 1389, Safarzadeh et al., 1383 and 1387). 

As the flow approaches the branch channel, it 

undergoes transverse acceleration due to the 

suction pressure caused by the division and it 

is divided into two parts. A part of the flow 

enters the intake while the rest of the flow 

continues moving forward within the main 

channel (Ramamurthy et al., 2007, Issa et al., 

1994, Neary et al., 1996, Shettar et al., 1996, 

Barkdoll et al., 1998). The flow entering the 

intake loses balance due to the side pressure 

gradient, shear stress, and centripetal force 

and causes the formation of secondary flow at 

the beginning of the branch channel (Hager et 

al., 1987 and 1992, Ferziger et al., 2002, Law 

et al., 1966). Using numerical models to 

simulate the flow field decreases the 
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experimental costs and saves time. Therefore, 

numerous numerical studies have been 

conducted on the flow within diversion 

channels. The three-dimensional flow within 

intake was simulated using finite volume 

method in this study (Ramamurthy at al., 

1990, Hsu et al., 2002, Chen et al., 1992, 

Neary et al., 1999). 

Soft computing and different artificial 

intelligence techniques have been widely used 

for modeling purposes in the recent past 

decades to predict nonlinear systems and 

complex problems. Researchers have recently 

conducted studies on hydrology and 

hydraulics phenomena in dividing channel 

using artificial intelligence techniques (Bilhan 

et al., 2011, Karimi et al., 2015, Kim et al., 

2008, Bonakdari et al., 2011, Baghalian et al., 

2012, Kashkuli et al., 1964, Ebtehaj et al., 

2013, Dursun et al., 2012). However, there is 

not a lot of documented studies on open 

channel intake modeling. The main aim of the 

present study was to predict the mean velocity 

of the flow within intakes in different width 

ratios using a neural network. First, 3D flow 

field of a 90-degree intake was simulated in 

various width ratios using the ANSIS0CFX 

software. The experimental model was used 

to verifying the CFX model. Then, the 

numerical simulation results were used to 

design and model an ANN-MLP neural 

network for predicting the mean velocity in 

the channel. 

2. Methods 

2.1. Experimental model 

The experimental model of Ramamurthy et 

al. (2009) was used to verify the results of the 

numerical simulation. The experimental 

model was a rectangular horizontal channel 

attached to a 90-degree weir. The length of 

the main channel and the weir were 6.198 and 

2.794 m, respectively. The width and height 

of the both channels were constant and equal 

to 0.61 and 0.305 m, respectively. The intake 

was located 2.794 m away from the entrance 

of the main channel. The discharge was equal 

to 
s

m
Qu

3

046.0 at the entrance of the main 

channel and 
s

m
Qb

3

038.0 at the entrance of 

the branch channel. Moreover, the ratio of the 

branch channel discharge to the main channel 

discharge was 838.0=
Q

Q
=Q

u

b
r . The general 

design of Ramamurthy et al. (2009) main 

channel and intake is illustrated in "Figure 1". 

 

Fig. 1. General design of Ramamurthy et al. 

(2007) intake used in the present study 

All parameters in the extracted results have 

been made dimensionless through the channel 

width (b= 0.61 m) and main channel upstream 

critical velocity (vc). The critical velocity in 

the main channel upstream was calculated 

using 
  3
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c  in which Qu is the 

discharge of the main channel upstream, b is 

the main channel width, and g is gravitational 

acceleration. In addition, the dimensionless 

coordinate axes were indicated as x
*
= x/b, y

*
= 

y/b and z
*
=z/b and the dimensionless 

velocities in x, y, and z coordinates were 

indicated as u
*
, v

*
, and w

*
.  
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2.2.  Numerical model 

To conduct the numerical modeling in this 

study through using ANSYS-CFX software, 

Navier-Stokes averaged equations and 

continuity equations should be solved. The 

two equations are as follows: 

( ) 0=uρ
x∂

∂
+

t∂

ρ∂
j

 
                         (1) 

( ) ( )

( )
ji

ij

i
ij

i

j

j

i

j

i
ji

j
j

u′u′ρ
x∂

∂
+

x∂

u∂
δ

3

2

x∂

u∂
+

x∂

u∂
μ

x∂

∂
+

x∂

ρ∂
=uuρ

x∂

∂
+uρ

x∂

∂

         
                                 (2) 

where ui and uj are velocities in x and y 

directions, respectively, p is the total pressure, 

ρ is the fluid density and ij is Kronecker delta 

and ( )
ji u′u′ρ

 
is the Reynolds stress.  

First, the Reynolds stress must be 

calculated through turbulence models and 

then, the momentum equation should be 

solved (Eq. 2). k-ω turbulence model was 

used in this simulation. This method is 

considered as one of the two-equation models 

of turbulence in which the first turbulence 

parameter is turbulence kinetic energy (k) and 

the second turbulence parameter is Specific 

Dissipation Rate (ω) (Kisi et al., 2012). 

The boundary condition of the normal 

velocity was used in the entrance of the main 

channel and for the exit boundaries of the 

field (branch‟s exit and the main channel) in 

this study. The boundary conditions of the 

wall and the floor of the channel wall were 

assumed to be smooth, and the walls being 

motionless and was used for a high level of 

opening boundary condition. Free surface of 

the flow field was defined and determined 

according to Eulerian viewpoint. The volume 

of the fluid (VOF) model was used to define 

the free surface. 

One of the important parameters in 

speeding up the execution of the model is the 

regionally suitable reticulation in which the 

current flows in. To obtain an optimum 

reticulation, the main channel was divided 

into three sections. The first section was 2.794 

m long and was located in the upstream of the 

main channel, the second section was 0.61 m 

long and was located in the middle of the 

main channel and the third section was 2.794 

m long and was located in the downstream of 

the main channel. The size of the cells 

upstream and downstream of the main 

channel was 1 cm× 0.5 cm× 0.5 cm, in the 

middle section it was 0.5 cm× 0.5 cm× 0.5 cm 

and the size of the cells of the branch channel 

network was selected to be 0.5 cm× 0.5 cm× 

0.5 cm and the calculations were carried out 

using these sizes. The numerical results were 

compared with the experimental results and 

an acceptable degree of consistency 

concerning the resulting error percentage was 

observed. Figure 2 shows the plan and the 

façade of the calculative field reticulation in 

the intake. 

 

Fig. 2. Plan and façade of the calculative field 

reticulation in the intake 

2.3. Artificial Neural Network 

The artificial neural network (ANN) 

method is considered as one of the soft 

computing methods. One of the benefits of 
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this method is its desirable performance in 

analyzing complex flows. In addition, the 

nonlinear models of flow can also be studied 

through this method. The basis of the process 

in this method is training and learning 

processes. The components of the ANN 

structure include hidden layers, hidden units 

and hidden neurons, the input layer, and 

output layer (Bilhan et al., 2011, Karimi et al., 

2015). 

The flexible structure of the artificial 

neural network makes it capable of modeling 

complex and nonlinear patterns between input 

and output data. The capability to estimate the 

accurate results is achieved through using 

input data on the basis of training and 

learning the process. What is meant by 

training the neural network is to obtain the 

weights (w) of the network. In addition, 

classifying different types of ANN is done 

based on the methods of obtaining the 

weights and also the utilized transfer 

functions. One of the various types of neural 

network that is used frecuentely is Multilayer 

Perceptron (MLP). An MLP feed forward 

includes an input layer, one or more hidden 

layers and an output layer (Fig. 3). Each layer 

is made up of some neurons the number of 

which in the input and output layers is equal 

to the number of inputs and outputs of the 

under-study issue, respectively. Various types 

of functions could be considered as sigmoid 

function. Hyperbolic tangent was used as the 

activation function in the hidden layers in this 

study. Levenberg-Marquardt method was 

used for training ANN. Back-propagation 

algorithm, which is one of the most beneficial 

algorithms, was used in order to figure out the 

weights and bias of the neural network in this 

method. This algorithm minimizes the 

difference between the observed outputs from 

the laboratory studies and the ANN model 

outputs very quickly through determining 

weights and bias (Smith, 1993). 

 
Fig. 3. General view of ANN-MLP 

The modeling and simulation of ANN-

Multilayer Perceptron (MLP) was written by 

the Matlab programming language in this 

study. In order to analyze and solve a neural 

network that has two hidden layers and in 

order to determine the number of the existing 

neurons in each layer, trial and error method 

was used. The functions and equations that 

are analyzed for the output layer are linear 

(Kisi et al., 2012, Melesse et al., 2011, Smith, 

1993). The way the trial and error method 

works is that various runs are taken in order to 

determine the number of neurons of the layers 

of the neural network in case the number of 

the neurons are not equal in the first and the 

second layer. Then the RMSE error is 

determined for each of them separately and 

the state that has the least amount of error will 

be selected as the base for modeling ANN. In 

this study, three data were considered as input 

and one data was considered as output. The 

used input parameters in this study were 

dimensionless and the inputs include 

nondimentionalized coordinates (y*), the ratio 

of the width of the subsidiary channel to the 

width of the main channel (wr) and the linear 

mean velocity (v*line), which presents the read 

velocities on the CFD model and present the 

mean velocity on the middle line of the 
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branch channel. These parameters were 

placed in the first layer of the neural network 

as the input parameters. The neural network 

was trained through a number of these 

parameters within the middle layer in the 

following stage so that they could gain their 

optimum structure and after reaching the 

already determined stopping point, the 

training process stopped. As mentioned 

earlier, the purpose of the structured neural 

network is to estimate the real average speed 

within the channel, therefore the neural 

network used in this study predicted the real 

average velocity of the surface in which the 

flow meter was located in through the aid of 

y*, wr, and v*line. 

3. Results 

The experimental model by Ramamurthy 

et al. (2009) was simulated three-

dimensionally in two phases of air and water 

in this section using ANSYS-CFX model. In 

order to verify the CFX model, the results of 

the numerical model were compared with the 

experimental results. The numerical model 

was simulated for different widths after 

verifying the CFX model and the v
*

line mean 

velocity was calculated afterwards in the 

vertical column in the center of the branch 

channel at different heights. Then the real 

mean velocity of the flow in the branch 

channel was extracted from the results of the 

CFD model in the areas with no experimental 

data. An ANN-MLP neural network was then 

designed and modeled using the results of the 

numerical simulation. Coordinates (y
*
), the 

ratio of the branch channel width to the main 

channel width (wr) and the linear mean 

velocity V
*

line dimensionless parameters were 

selected as the input data entering the ANN- 

MLP neural network for this purpose. The 

results obtained from the neural network were 

compared with the mean velocity in the weir 

in order to examine the accuracy of ANN- 

MLP model. 

3.1 CFX Model validity 

In order to validate the results of the CFX 

model, v
*
 (dimensionless velocity) of the 

numerical and experimental models in the 

channel was compared (Fig. 4). v
*
 values are 

shown in this figure for x
*
 values of -0.1, -

0.328, -0.558, and -0.787 in 

838.0
u

b

r
Q

Q
Q . Two statistical indexes 

were used to validate the results of the CFX 

model including the Root Mean Square Error 

(RMSE) and Mean Absolute Percentage Error 

(MAPE) defined as follows. 
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Where 
iEXPv  denote the experimental 

velocity and 
iCv FD denote the velocity results 

of CFD model, respectively. (RMSE) index 

presents the second root of the squared error 

and explains the difference between the 

numerical and experimental values and 

considers larger error weights. MAPE index 

presents the difference between the 

experimental and CFX model in the form of a 

percentage of real values. 

Table 1 shows the statistical indexes 

obtained for the results of CFX model and the 

experimental model for different Y
*
 cross 

sections. 
Table 1- Statistical Indexes 

  Y*= -0.29 Y*= -1.0 Y*= -1.69 

RMSE 0.01 0.012 0.017 

MAPE (%) 2 5.2 6.95 
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MAPE‟s average relative error was 

approximately 2%, 5.2%, and 6.95% in three 

cross sections of y
*
= -0.29, -1.0, -1.62, 

respectively, which is an indication of 

conformity between the CFX model and the 

experimental model results (Table 1). RMSE 

index is used for the purposes of quantitative 

examination of models. The table shows that 

the RMSE for y
*
= -0.29, -1.0, -1.62 cross 

sections was 0.01, 0.012 and 0.017, 

respectively. Taking into consideration the 

results of verification, it can be seen that the 

results of the CFX model are slightly different 

from the results of the experimental model in 

the branch channel downstream y
*
= -1.0 and 

1.62. Despite that, the maximum MAPE error 

obtained was equal to 6.95% that indicates the 

CFX model is fairly accurate. Because of this 

difference in the separation zone, and the 

contraction zone since the v
*
 decreases in the 

separation zone due to the presence of the 

recirculation zone and therefore, v
*
 becomes 

negative. v
*
 was maximum in the contraction 

zone and depths of z
*
= 0.0 to 0.2 and the 

contraction zone was denser in this area in 

comparison with the flow surface.  

3.2 ANN prediction of mean velocity in the 

intake 

  The neural network produced in this study 

had two hidden layers with an unknown 

number of nodes. Therefore, the number of 

the hidden nodes was determined through 

“trial and error” in the process of solving and 

analyzing using the neural network model. 

The number of the hidden nodes is constantly 

changing in trial and error, and an RMSE 

amount obtained for each of the hidden nodes. 

RMSE was used to obtain the error unique to 

each hidden node in the present neural 

network. Each hidden node that had the 

minimum RMSE amount was determined as 

the chosen node. The minimum amount of 

RMSE obtained for the designed ANN model 

was equal to 6.36E-0.5 and this error was 

related to the state where there were 7 

neurons within the first layers and 5 neurons 

within the second layer. Therefore, this state 

was selected as the base of the neural 

network. The geometric and algorithm views 

of the obtained neural network are shown in 

Fig. 5.  

 

 

 

Fig. 4. Verification graphs between the CFX model 

and Ramamurthy et al.‟s (2007) experimental model 

results in: a) y*=-0.29, b) y*=-1.00 and c) y*=-1.62 
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Fig. 5. The algorithm of the optimum ANN neural 

network 

The major objective of presenting the 

ANN-MLP neural network model was to 

predict the mean velocity within the weir. In 

order to qualitatively examine the predicted 

amounts in the “test” state, the results of 

ANN-MLP model have been shown as 

scattered plot in width ratios of 1.4, 1.2, 1, 

0.8, and 0.6 in Fig. 6. The vertical coordinate 

presents the v
*
 in ANN-MLP model, and the 

horizontal coordinate represents the v
*
 

observed in the experimental model. The line 

equation with y=C1X+C2 was used in the 

scatter plot. C1 and C2 are constants for 

evaluating the accuracy of the model. The 

closer C1 is to 1, and the closer C2 is to zero, 

the more accurate is the ANN-MLP model. 

Considering Fig. 6, the ANN-MLP model is 

most accurate in the width ratio of 1.2 in 

comparison with the other width ratios since 

in this width ratio, the line equation with 

y=C1X+C2 has the maximum C1 equal to 

0.9964 and the minimum C2 equal to 0.00005. 

Determination coefficient value (R
2
) is 

another index for examining the accuracy of 

the ANN-MLP model that indicates the linear 

correlation between the predicted and 

experimental amounts. The closer R
2
 to 1, the 

more accurate is the ANN-MLP model. 

Therefore, taking into account Fig. 6, the 

ANN-MLP model has the maximum (R
2
) in 

the width ratio of 1.2, which is equal to 

0.9822. Therefore, it is the most accurate in 

predicting the mean velocity in the channel. 

When the linear fit line is located on the left 

side and on the right side of the exact line, the 

presented model is being overestimated and 

underestimated, respectively. It could be seen 

in Fig. 7 that the ANN-MLP model has been 

underestimated in the width ratio of 1, but in 

the width ratios of 1.4, 1.2, 0.8, and 0.6, the 

linear fit line was almost on the exact line. 

Therefore, it could be concluded that the 

ANN-MLP model is least accurate in the 

width ratio of 1, and this is due to the vastness 

of the separation zone and the contraction 

zone in this width ratio. 

 

 

 

Fig. 6.  Difference between the predicted average 

velocity by the neural network and the real average 

velocity in the channel for different width ratios 



Application of soft computing methods in the analysis of …, Karimi et al. 

44 

The predicted results are presented in Fig. 

7 in the training state. The x-axis of this figure 

indicates the predicted velocity in the weir 

channel and the y-axis represents the 

experimental velocity. The little square in the 

figure indicates the amount of V
*

mean 

predicted by the ANN-MLP model, and the 

filled-in circles indicate the observed V
*

mean in 

the experimental model. According to this 

figure, the estimated values by the ANN-MLP 

model fairly conform to the experimental 

ones.  

 

  

  

 

 

Fig. 7. Comparison of the predicted and experimental 

V*
mean in testing state 

4. Conclusions 

One of the strategies used to prevent flood 

and deviate flow in the irrigation networks 

and drainage systems is utilizing intakes. 

Calculating the mean velocity of the flow is 

amongst the most crucial hydraulic paramet-

ers in increasing the intake efficiency. The 

main aim of this research was to present an 

applicable solution for predicting the real 

mean velocity taking into consideration the 

velocity obtained from the numerical models 

in confluence zone in the open channel. The 

verification error percentage mean was 

approximately 5%, and RMSE of simulation 

was 0.013, which indicated that the results of 

the ANSYS-CFX modeling fairly conform to 

the experimental data. Soft computing was 

used to predict the real mean velocity within 

the branch channel better and more 

accurately. Moreover, the method presented is 

ANN-MLP method that predicts the real 

mean velocity within the channel through 

receiving coordinates (y*), the ratio of the 

branch channel width to the main channel 

width (wr) and the linear mean velocity 

parameters (V
*

line), which were obtained by 

the numerical model. The results show that 

combining the flowmeter measurements and 

the ANN-MLP method could simulate the 

mean velocity of intake flow with a mean R
2
 

value of 0.948. Taking into consideration that 

there is a relatively slight difference between 

the real mean velocity and the mean velocity 

extracted through the ANN-MLP model in all 

width ratios it becomes clear that the 

presented neural network has a proper level of 

accuracy in predicting the mean velocity 

within a branch channel. 
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Nomenclature 

main channel width b  

Acceleration Gravity g    

Reynolds stress   

 jU′iU′ρ  

longitudinal coordinates  Y* 

The total pressure  P 

fluid density ρ 

turbulence kinetic energy k    

Specific Dissipation Rate of the 

second turbulence 

ω 

constant assume the standard 

values 

β', α, , σk,σω 

 

Production rate of turbulence Pk    

the main channel upstream 

discharge  

Qu    

the branch channel discharge Qb 

branch channel width x* 

water depth z* 

Reynolds number Re 

No dimensional velocity at x axis u*    

longitudinal velocity in x axis U  

critical velocity of main channel 

upstream 

Vc   

longitudinal velocities at y axis V 

average velocity in the vertical 

column of the branch channel 

Vline 

the ratio of channel width to the 

main channel width 

Wr 
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